everyone.
I am using AFL with qemu mode. And I've wrote this small binary to test everything.
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <dlfcn.h>
int main(int argc, char **argv){
typedef int (*pf_t)(char*);
void* handle;
char* error;
char mystring[100];
fgets(mystring,sizeof(mystring),stdin);
printf("mystring: %s\n",mystring);
handle = dlopen("libdiag.so",RTLD_NOW);
if(!handle){
fprintf(stderr,"%s\n",dlerror());
exit(1);
}
dlclose(handle);
return 0;
}
Everything works well if I don't add dlopen(). But if I add it, afl will stop here.
The command I am using is "afl-fuzz -i in -o out -Q ./a.out"
afl-fuzz 2.49b by <lcamtuf#google.com>
[+] You have 8 CPU cores and 3 runnable tasks (utilization: 38%).
[+] Try parallel jobs - see docs/parallel_fuzzing.txt.
[*] Checking CPU core loadout...
[+] Found a free CPU core, binding to #1.
[*] Checking CPU scaling governor...
[*] Setting up output directories...
[+] Output directory exists but deemed OK to reuse.
[*] Deleting old session data...
[+] Output dir cleanup successful.
[*] Scanning 'in'...
[+] No auto-generated dictionary tokens to reuse.
[*] Creating hard links for all input files...
[*] Validating target binary...
[*] Attempting dry run with 'id:000000,orig:aahat.jpg'...
[*] Spinning up the fork server...
[+] All right - fork server is up.
I don't know why. All I know is that someone said afl qemu mode has something wrong with dlopen. I am wondering someone can give me some suggestions? Thanks!
Related
I have a class that calls a kernel in its constructor, as follows:
"ScalarField.h"
#include <iostream>
void ERROR_CHECK(cudaError_t err,const char * msg) {
if(err!=cudaSuccess) {
std::cout << msg << " : " << cudaGetErrorString(err) << std::endl;
std::exit(-1);
}
}
class ScalarField {
public:
float* array;
int dimension;
ScalarField(int dim): dimension(dim) {
std::cout << "Scalar Field" << std::endl;
ERROR_CHECK(cudaMalloc(&array, dim*sizeof(float)),"cudaMalloc");
}
};
"classA.h"
#include "ScalarField.h"
static __global__ void KernelSetScalarField(ScalarField v) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < v.dimension) v.array[index] = 0.0f;
}
class A {
public:
ScalarField v;
A(): v(ScalarField(3)) {
std::cout << "Class A" << std::endl;
KernelSetScalarField<<<1, 32>>>(v);
ERROR_CHECK(cudaGetLastError(),"Kernel");
}
};
"main.cu"
#include "classA.h"
A a_object;
int main() {
std::cout << "Main" << std::endl;
return 0;
}
If i instantiate this class on main (A a_object;) i get no errors. However, if I instantiate it outside main, just after defining it (class A {...} a_object;) I get an "invalid device function" error when the kernel launches. Why does that happen?
EDIT
Updated code to provide a more complete example.
EDIT 2
Following the advice in the comment by Raxvan, I wanted to say i have the dimensions variable used in ScalarField constructor also defined (in another class) outside main, but before everything else. Could that be the explanation? The debugger was showing the right value for dimensions though.
The short version:
The underlying reason for the problem when class A is instantiated outside of main is that a particular hook routine which is required to initialise the CUDA runtime library with your kernels is not being run before the constructor of class A is being called. This happens because there are no guarantees about the order in which static objects are instantiated and initialised in the C++ execution model. Your global scope class is being instantiated before the global scope objects which do the CUDA setup are initialised. Your kernel code is never being loaded into the context before it is call, and a runtime error results.
As best as I can tell, this is a genuine limitation of the CUDA runtime API and not something easily fixed in user code. In your trivial example, you could replace the kernel call with a call to cudaMemset or one of the non-symbol based runtime API memset functions and it will work. This problem is completely limited to user kernels or device symbols loaded at runtime via the runtime API. For this reason, an empty default constructor would also solve your problem. From a design point of view, I would be very dubious of any pattern which calls kernels in the constructor. Adding a specific method for class GPU setup/teardown which doesn't rely on the default constructor or destructor would be a much cleaner and less error prone design, IMHO.
In detail:
There is an internally generated routine (__cudaRegisterFatBinary) which must be run to load and register kernels, textures and statically defined device symbols contained in the fatbin payload of any runtime API program with the CUDA driver API before the kernel can be called without error. This is a part of the "lazy" context initialisation feature of the runtime API. You can confirm this for yourself as follows:
Here is a gdb trace of the revised example you posted. Note I insert a breakpoint into __cudaRegisterFatBinary, and that isn't reached before your static A constructor is called and the kernel launch fails:
talonmies#box:~$ gdb a.out
GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2.1) 7.4-2012.04
Copyright (C) 2012 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
For bug reporting instructions, please see:
<http://bugs.launchpad.net/gdb-linaro/>...
Reading symbols from /home/talonmies/a.out...done.
(gdb) break '__cudaRegisterFatBinary'
Breakpoint 1 at 0x403180
(gdb) run
Starting program: /home/talonmies/a.out
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Scalar Field
[New Thread 0x7ffff5a63700 (LWP 10774)]
Class A
Kernel : invalid device function
[Thread 0x7ffff5a63700 (LWP 10774) exited]
[Inferior 1 (process 10771) exited with code 0377]
Here is the same procedure, this time with A instantiation inside main (which is guaranteed to happen after the objects which perform lazy setup have been initialised):
talonmies#box:~$ cat main.cu
#include "classA.h"
int main() {
A a_object;
std::cout << "Main" << std::endl;
return 0;
}
talonmies#box:~$ nvcc --keep -arch=sm_30 -g main.cu
talonmies#box:~$ gdb a.out
GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2.1) 7.4-2012.04
Copyright (C) 2012 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
For bug reporting instructions, please see:
<http://bugs.launchpad.net/gdb-linaro/>...
Reading symbols from /home/talonmies/a.out...done.
(gdb) break '__cudaRegisterFatBinary'
Breakpoint 1 at 0x403180
(gdb) run
Starting program: /home/talonmies/a.out
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Breakpoint 1, 0x0000000000403180 in __cudaRegisterFatBinary ()
(gdb) cont
Continuing.
Scalar Field
[New Thread 0x7ffff5a63700 (LWP 11084)]
Class A
Main
[Thread 0x7ffff5a63700 (LWP 11084) exited]
[Inferior 1 (process 11081) exited normally]
If this is really a crippling problem for you, I would suggest contacting NVIDIA developer support and raising a bug report.
I have a function in my program called float valueAt(float3 v). It's supposed to return the value of a function at the given point. The function is user-specified. I have an interpreter for this function at the moment, but others recommended I compile the function online so it's in machine code and is faster.
How do I do this? I believe I know how to load the function when I have PTX generated, but I have no idea how to generate the PTX.
CUDA provides no way of runtime compilation of non-PTX code.
What you want can be done, but not using the standard CUDA APIs. PyCUDA provides an elegant just-in-time compilation method for CUDA C code which includes behind the scenes forking of the toolchain to compile to device code and loading using the runtime API. The (possible) downside is that you need to use Python for the top level of your application, and if you are shipping code to third parties, you might need to ship a working Python distribution too.
The only other alternative I can think of is OpenCL, which does support runtime compilation (that is all it supported until recently). The C99 language base is a lot more restrictive than what CUDA offers, and I find the APIs to be very verbose, but the runtime compilation model works well.
I've thought about this problem for a while, and while I don't think this is a "great" solution, it does seem to work so I thought I would share it.
The basic idea is to use linux to spawn processes to compile and then run the compiled code. I think this is pretty much a no-brainer, but since I put together the pieces, I'll post instructions here in case it's useful for somebody else.
The problem statement in the question is to be able to take a file that contains a user-defined function, let's assume it is a function of a single variable f(x), i.e. y = f(x), and that x and y can be represented by float quantities.
The user would edit a file called fx.txt that contains the desired function. This file must conform to C syntax rules.
fx.txt:
y=1/x
This file then gets included in the __device__ function that will be holding it:
user_testfunc.cuh:
__device__ float fx(float x){
float y;
#include "fx.txt"
;
return y;
}
which gets included in the kernel that is called via a wrapper.
cudalib.cu:
#include <math.h>
#include "cudalib.h"
#include "user_testfunc.cuh"
__global__ void my_kernel(float x, float *y){
*y = fx(x);
}
float cudalib_compute_fx(float x){
float *d, *h_d;
h_d = (float *)malloc(sizeof(float));
cudaMalloc(&d, sizeof(float));
my_kernel<<<1,1>>>(x, d);
cudaMemcpy(h_d, d, sizeof(float), cudaMemcpyDeviceToHost);
return *h_d;
}
cudalib.h:
float cudalib_compute_fx(float x);
The above files get built into a shared library:
nvcc -arch=sm_20 -Xcompiler -fPIC -shared cudalib.cu -o libmycudalib.so
We need a main application to use this shared library.
t452.cu:
#include <stdio.h>
#include <stdlib.h>
#include "cudalib.h"
int main(int argc, char* argv[]){
if (argc == 1){
// recompile lib, and spawn new process
int retval = system("nvcc -arch=sm_20 -Xcompiler -fPIC -shared cudalib.cu -o libmycudalib.so");
char scmd[128];
sprintf(scmd, "%s skip", argv[0]);
retval = system(scmd);}
else { // compute f(x) at x = 2.0
printf("Result is: %f\n", cudalib_compute_fx(2.0));
}
return 0;
}
Which is compiled like this:
nvcc -arch=sm_20 -o t452 t452.cu -L. -lmycudalib
At this point, the main application (t452) can be executed and it will produce the result of f(2.0) which is 0.5 in this case:
$ LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH ./t452
Result is: 0.500000
The user can then modify the fx.txt file:
$ vi fx.txt
$ cat fx.txt
y = 5/x
And just re-run the app, and the new functional behavior is used:
$ LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH ./t452
Result is: 2.500000
This method takes advantage of the fact that upon recompilation/replacement of a shared library, a new linux process will pick up the new shared library. Also note that I've omitted several kinds of error checking for clarity. At a minimum I would check CUDA errors, and I would also probably delete the shared object (.so) library before recompiling it, and then test for its existence after compilation, to do a basic test that the compilation proceeded successfully.
This method entirely uses the runtime API to achieve this goal, so as a result the user would have to have the CUDA toolkit installed on their machine and appropriately set up so that nvcc is available in the PATH. Using the driver API with PTX code would make this process much cleaner (and not require the toolkit on the user's machine), but AFAIK there is no way to generate PTX from CUDA C without using nvcc or a user-created toolchain built on the nvidia llvm compiler tools. In the future, there may be a more "integrated" approach available in the "standard" CUDA C toolchain, or perhaps even by the driver.
A similar approach can be arranged using separate compilation and linking of device code, such that the only source code that needs to be exposed to the user is in user_testfunc.cu (and fx.txt).
EDIT: There is now a CUDA runtime compilation facility, which should be used in place of the above.
I just write an simple CUDA Thrust program, but when I run it. I got this error: thrust::system::system_error at position 0x0037f99c .
Can someone help me to figure out why this happen?
#include<thrust\host_vector.h>
#include<thrust\device_vector.h>
#include<iostream>
using namespace std;
using namespace thrust;
int main()
{
thrust::host_vector<int> h_vec(3);
h_vec[0]=1;h_vec[1]=2;h_vec[2]=3;
thrust::device_vector<int> d_vec(3) ;
d_vec= h_vec;
int h_sum = thrust::reduce(h_vec.begin(), h_vec.end());
int d_sum = thrust::reduce(d_vec.begin(), d_vec.end());
return 0;
}
A few suggestions with Thrust:
If you are compiling your code with -G and having trouble, try compiling without -G
You can catch the errors that thrust throws, to get more information.
It's always recommended to compile your code for the architecture of the GPU you are using. So if you are on a cc2.0 GPU, compile with -arch=sm_20. If you are on a cc3.0 GPU, compile with -arch=sm_30 etc.
Finally, it's recommended to build a 64-bit project. On windows you would select a release/x64 project.
What does this error mean? I can't seem to find ANY information on it. It occurs on a cudaEventRecord.
in the project header file:
cudaEvent_t cudaEventStart;
in a .c file:
cudaEventCreate(&cudaEventStart);
printf("create event: %d\n", (int) cudaEventStart);
in my one .cu file:
printf("record event: %d\n", (int) cudaEventStart);
cudaEventRecord(cudaEventStart);
the relevant output shows what the problem with the call is. cudaEventStart isn't a valid event resource in my cu file for some reason:
create event: 44199920
record event: 0
Details
CUDA 3.2
GTX 480
64-bit Win7
I'm in the process of porting my code from linux to windows. It runs fine on the same card in linux, and there have been only a few changes. I defined roundf and added the following:
typedef size_t off_t;
#define strtof(str,n) (float)strtod(str,n)
#include <float.h>
#define isnan(n) _isnan(n)
#define strcasecmp _stricmp
#include <io.h>
#define read _read
It isn't clear to me why any of these things should affect cuda resources. Perhaps I'm building the project incorrectly somehow...?
An invalid resource handle usually means trying to use something (pointer, symbol, texture, kernel) in a context where it was not created. A more specific answer will require a more specific question, particularly which API you are using and how/if you are using host threads anywhere in the code.
I've written a cuda plugin (dynamic library), and I have a program written in C which uses dlopen() to load this plugin. I am using dlsym() to get the functions from this plugin. For my application it is very important that any time of loading plugin the program gets a new handle with dlopen() calling (the library file may modified subsequently).
Therefore after the using of functions from my plugin I invoke the dlclose(). The invocations dlopen() - dlsym() - dlclose() are occur during my program execution (in the loop).
If I working on the computer with NVIDIA driver 256.35 (CUDA 3.0 or 3.1) I have a memory leak (I use in my plugin cudaMemGetInfo() calling for the diagnostics).
If I working on the computer with NVIDIA driver 195.36.15 (CUDA 3.0) I have an error after some time of the program execution: “NVIDIA: could not open the device file /dev/nvidia0 (Too many open files).”
If I don't use the dlclose() invocation the program is working fine, but in this case I can't replace the plugin on a new one's during my program execution.
Anyone encountered this problem?
Thanks.
Nobody wrote plugins on CUDA?
I've found the similar example on CUDA SDK: matrixMulDynlinkJIT. I've done small correction in the code. In particular, in the file cuda_drvapi_dynlink.c I've corrected cuInit() function:
CUDADRIVER CudaDrvLib = NULL;
CUresult CUDAAPI cuInit(unsigned int Flags)
{
//CUDADRIVER CudaDrvLib;
CUresult result;
int driverVer;
if (CudaDrvLib != NULL) {
dlclose (CudaDrvLib);
CudaDrvLib = NULL;
}
.......
}
And in the file matrixMulDynlinkJIT.cpp I've added loop in the main() function:
int main(int argc, char** argv)
{
printf("[ %s ]\n", sSDKsample);
while (1) {
// initialize CUDA
CUfunction matrixMul = NULL;
cutilDrvSafeCallNoSync(initCUDA(&matrixMul, argc, argv));
.....
}//while (1)
cutilExit();
}
So, I have the same problem like in my program (after some time execution): “NVIDIA: could not open the device file /dev/nvidia0 (Too many open files).”
But when I comment out the dlclose() in the cuda_drvapi_dynlink.c file – all works fine
I can't understand this behavior...
Any ideas?