Java has the concept of a "bean", which is a class with a no-arg constructor and getter/setter methods. Does this pattern have a more generic name so that, if we're talking to programmers who have never used Java, we can avoid using the term "bean"?
If you look at JavaBean definition, a more "generic" name could be reusable software component (see this tutorial from 1996!), as it provides a well-defined set of services (serialization, accessors, nullary constructor)
But of course all components are not necessarily JavaBean.
They can be also viewed as "property manager", as they allow discovery and access of their properties (through PropertyDescriptor, as well as managing constraints between properties.
That last aspect allows for JVM-based languages like Scala to adapt their own properties to the JavaBean convention, with scala.reflect.BeanProperty directive.
In C, a struct. In VB, structure.
Altough the bean construction is often used as a replacement for a struct, this is really an antipattern: Like all OO classes, most beans should encapsulate behaviour, not be a dumb data container. Originally, a Bean was positioned as the Java equivalent of a Windows COM component, whose properties could be discovered by a containing framework.
I think it is related to Object-relational mapping which is also available in other languages or even areas (like CAD).
Related
Exists follow text in ECMAScript specification, sounds like:
Although ECMAScript objects are not inherently class-based, it is often convenient to define class-like abstractions based upon a common pattern of constructor functions, prototype objects, and methods. The ECMAScript built-in objects themselves follow such a class-like pattern. Beginning with ECMAScript 2015, the ECMAScript language includes syntactic class definitions that permit programmers to concisely define objects that conform to the same class-like abstraction pattern used by the built-in objects.
From all of these I interested in:
The ECMAScript built-in objects themselves follow such a class-like pattern
What does it mean?
I think the class-like pattern means that the programming style is similar to the programming style using classes.
For example:
Accessing the property: obj.property; or calling the method: obj.method();
If it is not it, explain why?
I think the "class-like pattern" means that the programming style is similar to the programming style using classes.
Yes, exactly. See class-based programming on Wikipedia.
Accessing a property or calling a method
No, that's basic object-orientation. It doesn't need prototypes or classes for that.
What makes a class is the instantiation of alike objects (with the new operator), the initialisation of instance data members (in the constructor), and the shared implementation of methods (in the class body).
Additionally, most class systems also feature inheritance with a superclass hierarchy. JavaScript achieves that (and the sharing of methods) via prototype inheritance.
You should be able to easily see how all the ECMAScript built-in objects follow this pattern.
There is an approach in library API design where the user must implement a subclass (or, sometimes, a set of functions) in order to use the API. For example, libraries may provide an (abstract) base class which the user must extend, instantiate, and then pass back to the library.
Is there a specific name for this kind of approach?
(The phrase "Service Provider Interface" seems to appear in Java but not elsewhere. It is also widely used in "Plug-in" architectures but does not seem to be the same thing.)
The term abstract has a precise well known definition within the programming community, so I think we could say
We provide an abstract API consisting of a set of abstract classes
and interfaces designed for you to extend and customise with concrete
implementations.
and most developers would be familiar with the intended meaning.
I often seem to run into the discussion of whether or not to apply some sort of prefix/suffix convention to interface type names, typically adding "I" to the beginning of the name.
Personally I'm in the camp that advocates no prefix, but that's not what this question is about. Rather, it's about one of the arguments I often hear in that discussion:
You can no longer see at-a-glance
whether something is an interface or a
class.
The question that immediately pops up in my head is: apart from object creation, why should you ever have to care whether an object reference is a class or an interface?
I've tagged this question as language agnostic, but as has been pointed out it may not be. I contend that it is because while specific language implementation details may be interesting, I'd like to keep this on a conceptual level. In other words, I think that, conceptually, you'd never have to care whether an object reference is typed as a class or an interface but I'm not sure, hence the question.
This is not a discussion about IDEs and what they do or don't do when visualizing the different types; caring about the type of an object is certainly a necessity when browsing through code (packages/sources/whatever form). Nor is it a discussion about the pros or cons about either naming convention. I just can't seem to figure out in what scenario, other than object creation, you actually care about wether or not you're referencing a concrete type or an interface.
Most of the time, you probably don't care. But here are some instances that I can think of where you would. There are several, and it does vary a little bit by language. Some languages don't mind as much as others.
In the case of inversion of control (where someone PASSES you a parameter) you probably don't care if it's an interface or an object as far as calling its methods etc. But when dealing with types, it definitely can make a difference.
In managed languages such as .NET languages, interfaces can usually only inherit one interface, whereas a class can inherit one class but implement many interfaces. The order of classes vs interfaces may also matter in a class or interface declaration. So you need to know which is which when defining a new class or interface.
In Delphi / VCL, interfaces are reference counted and automatically collected, whereas classes must be explicitly freed, so lifecyle management on the whole is affected, not just the creation.
Interfaces may not be viable sources for class references.
Interfaces can be cast to compatible interfaces, but in many languages, they cannot be cast to compatible classes. Classes can be cast to either.
Interfaces may be passed to parameters of type IID, or IUnknown, whereas classes cannot (without a cast and a supporting interface).
An interface's implementation is unknown. Its input and output are defined, but the implementation which creates the output is abstracted. In general, ones attitude may be that when working with a class, one may know how the class works. But when working with an interface, no such assumption should be made. In a perfect world, it might make no difference. But in reality, this most certainly can have affect your design.
I agree with you (and thereby do not use an "I" prefix for interfaces). We shouldn't have to care whether it is an abstract class or an interface.
Worth noting that Java needs to have a notion of interface solely because it does not support multiple inheritance. Otherwise, "abstract class" concept would suffice (which may be "all" abstract, or partially abstract, or almost concrete and just 1 tiny bit abstract, whatever).
Things that concrete class can have and the interfaces can't:
Constructors
Instance fields
Static methods and static fields
So if you use the convention of starting all interface names with 'I' then it indicates to the user of your library that the particular type will not have any of the above mentioned things.
But personally I feel that this is not a reason enough to start all interface names with 'I'. The modern IDEs are powerful enough to indicate if some type is an interface. Also it hides the true meaning of an interface name: imagine if Runnable and List interfaces were named IRunnable and IList repectively.
When a class is used, I can make the assumption that I will get objects from a relatively small and almost well-defined range of subclasses. That's because subclassing is - or at least it should be
- a decision that isn't made too easily, especially in languages that don't support multiple inheritance. In contrast, interfaces can be implemented by any class, and the implementation can be added later to any class.
So the information is useful, especially when browsing through code, and trying to get a feeling what the code author intended to do - but I think it should be enough, if the IDE shows interfaces/classes as distinctive icons.
You want to see at a glance which are the "interfaces" and which are the "concrete classes" so that you can focus your attention to the abstractions in the design instead of the details.
Good designs are based on abstractions - if you know and understand them you understand the system without knowing any of the details. So you know you can skip the classes without the I prefix, and focus on the ones that do have it while you are understanding the code, and you also know to avoid building new code around non-interface classes without having to refer to some other design document.
I agree that the I* naming convention is just not appropriate for modern OO languages, but truth is this question isn't really language agnostic. There are legitimate cases where you have an interface not for any architectural reason but because you simply don't have an implementation or have access to an implementation. For these cases you can read I* as *Stub or similar, and, in these cases, it might make sense to have an IBlah and a Blah class
These days, though, you rarely come up against this, and in modern OO languages when you say Interface you actually mean Interface not just I don't have the code for this. So there is no need for the I*, and in fact it encourages really bad OO design as you won't get the natural naming conflicts that would tell you something's gone wrong in your architecture. Say you had a List and an IList... what's the difference? when would you use one over the other? if you wanted to implement IList would you be constrained (conceptually at least) by what List does? I'll tell you what... if I found both an IBlah and a Blah class in any of my codebases I would purge one at random and take away that person's commit privileges.
Interfaces don't have fields, hence when you use IDisposable (or whatever), you know you're only declaring what you can do. That seems to me the main point of it.
Distinguishing between interfaces and classes may be useful, anywhere the type is referenced, in the IDE or out, to determine:
Can I make a new implementation of this type?
Can I implement this interface in a language that does not support multiple inheritance of implementation classes (e.g., Java).
Can there be multiple implementations of this type?
Can I easily mock this interface in an arbitrary mocking framework?
It is worth noting that UML distinguishes between interfaces and implementation classes. In addition, the "I" prefix is used in the examples in "The Unified Modeling Language User Guide" by the three amigos Booch, Jacobson and Rumbaugh. (Incidentally, this also provides an example why IDE syntax coloring alone is not sufficient to distinguish in all contexts.)
You should care, because :
An interface with capital "I" enables one, namely you or your co-workers to use any implementation which implements the interface. If in the future you figure out a better way to do something, say a better list sorting algorithm, you will be stuck with having the change ALL of the invoking methods as well.
It helps in understanding code - e.g. you don't need to memorize all 10 implementations of say, I_SortableList , you just care that it sorts a list (or something like that). Your code becomes practically self-documenting here.
To complete the discussion, here is a pseudocode example illustrating the above:
//Pseudocode - define implementations of ISortableList
Class SortList1 : ISortableLIst, SortList2:IsortableList, SortList3:IsortableList
//PseudoCode - the interface way
void Populate(ISortableList list, int[] nums)
{
list.set(nums)
}
//PseudoCode - the "i dont care way"
void Populate2( SortList1 list, int[] nums )
{
list.set(nums)
}
...
//Pseudocode - create instances
SortList1 list1 = new SortList1();
SortList2 list2 = new SortList2();
SortList3 list3 = new SortList3();
//Invoke Populate() - The "interface way"
Populate(list1,nums);//OK, list1 is ISortableList implementation
Populate(list2,nums);//OK, list2 is ISortableList implementation
Populate(list3,nums);//OK, list3 is ISortableList implementation
//Invoke Populate2() - the "I don't care way"
Populate(list1,nums);//OK, list1 is an instance of SortList1
Populate(list2,nums);//Not OK, list2 is not of required argument type, won't compile
Populate(list3,nums);//the same as above
Hope this helps,
Jas.
Take Java syntax as an example, though the question itself is language independent. If the following snippet takes an object MyAbstractEmailTemplate as input argument in the method setTemplate, the class MyGateway will then become tightly-coupled with the object MyAbstractEmailTemplate, which lessens the re-usability of the class MyGateway.
A compromise is to use dependency-injection to ease the instantiation of MyAbstractEmailTemplate. This might solve the coupling problem
to some extent, but the interface is still rigid, hardly providing enough flexibility to
other developers/ applications.
So if we only use primitive data type (or even plain XML in web service) as the input/ output of a method, it seems the coupling problem no longer exists. So what do you think?
public class MyGateway {
protected MyAbstractEmailTemplate template;
public void setTemplate(MyAbstractEmailTemplate template) {
this.template = template;
}
}
It's pretty difficult to understand what you are really asking, but going the route of typing everything to Object does not lead to loose coupling because you can't do anything with the input without downcasting, which would break the Liskov Substituion Principle.
Taken to the extreme it leads you here:
public class MyClass
{
public object Invoke(object obj);
}
This is not loose coupling, it's just obscure and hard-to-maintain code.
The name MyAbstractEmailTemplate makes me believe that you are talking about an abstract class.
You should always program against interfaces, so instead of having MyGateway depend on MyAbstractEmailTemplate, it should depend on an EmailTemplate interface, where MyAbstractEmailTemplate implements EmailTemplate. Then, you can pass your custom implementations around as you want to, without further tight coupling.
Combine this with DI and you've got yourself a pretty decent solution.
Not exactly sure what you mean with "the interface is still rigid", but obviously you should design your interface in such a way that it provides the functionality you need.
MyGateway has to assume something about the inputs. Even if it used XML, it would have to assume something about the structure and content of the XML. Coupling isn't an evil in its own right; expresses the contract between two pieces of code. The oft-repeated advice to avoid tight coupling is really just saying that coupling should express the essence of a contract, not more and not less. Passing a specific type (particularly an interface type) is a very good way to achieve this balance.
The first problem you will run into is that a lot of types are simply not representable by a primitive data type (It's a Java problem that there are primitive types at all.).
The coupling should be reduced by using a proper inheritance hierarchy. What means proper? The method should take exactly that part of the interface as a parameter that is need. Not more not less.
After all you won't be able to avoid dependencies. Methods have to know about what they can do with their input or have to able to make assumptions (see C++ concepts) about the capabilities of the input.
IMHO there is nothing inherently wrong in using objects (wth small cap, not Objects) as method parameters and/or class members. Yes, these create dependencies. You can manage this in (at least) two ways:
acknowledge that by creating this dependency, the two classes become tightly coupled. This is entirely appropriate in many cases, where two (or more) classes in fact form a component, which is a meaningful unit of reuse in itself, and its parts may not make much sense or be interchangeable.
if there are multiple interchangeable candidates for a method parameter, these are obvious candidates to form a class hierarchy. Then you program for the interface and can pass any object of any class implementing that interface as parameter to your method. Note that the phrase "there are multiple interchangeable candidates for a method parameter" is a loose rephrasing of the Liskov Substitution Principle, which is the foundation of polymorphism.
in some languages, e.g. C++, the third way would be using templates. Then you need no common interface, only specific methods/members need to resolvable when the template is instantiated. However, since instantiation happens at compile time, this is entirely static binding.
sThe problem is I would say, that the best java can offer are interfaces and people start to see that they are too rigid. It would be interesting to use something like what is in Go language, that allows flexible checking for all methods of an interface to be present in the type, you do not have to be explicit about implementing some interface. We also need something better than interfaces to specify the constraints - maybe some sort of contracts. Another thing is the interface evolution.
Here is the problem statement: Calling a setter on the object should result in the object to change to an object of a different class, which language can support this?
Ex. I have a class called "Man" (Parent Class), and two children namely "Toddler" and "Old Man", they are its children because they override a behaviour in Man called as walk. ( i.e Toddler sometimes walks using both his hands and legs kneeled down and the Old man uses a stick to support himself).
The Man class has a attribute called age, I have a setter on Man, say setAge(int ageValue). I have 3 objects, 2 toddlers, 1 old-Man. (The system is up and running, I guess when we say objects it is obvious). I will make this call, toddler.setAge(80), I expect the toddler to change to an object of type Old Man. Is this possible? Please suggest.
Thanks,
This sounds to me like the model is wrong. What you have is a Person whose relative temporal grouping and some specific behavior changes with age.
Perhaps you need a method named getAgeGroup() which returns an appropriate Enum, depending on what the current age is. You also need an internal state object which encapsulates the state-specific behavior to which your Person delegates behavior which changes with age.
That said, changing the type of an instantiated object dynamically will likely only be doable only with dynamically typed languages; certainly it's not doable in Java, and probably not doable in C# and most other statically typed languages.
This is a common problem that you can solve using combination of OO modelling and design patterns.
You will model the class the way you have where Toddler and OldMan inherit from Man base class. You will need to introduce a Proxy (see GoF design pattern) class as your access to your Man class. Internally, proxy hold a man object/pointer/reference to either Toddler or OldMan. The proxy will expose all the interfaces that is exposed by Man class so that you can use it as it is and in your scenario, you will implement setAge similar to the pseudo code below:
public void setAge(int age)
{
if( age > TODDLER_MAX && myMan is Toddler)
myMan = new OldMan();
else
.....
myMan.setAge(age);
}
If your language does not support changing the classtype at runtime, take a look at the decorator and strategy patterns.
Objects in Python can change their class by setting the __class__ attribute. Otherwise, use the Strategy pattern.
I wonder if subclassing is really the best solution here. A property (enum, probably) that has different types of people as its possible values is one alternative. Or, for that matter, a derived property or method that tells you the type of person based on the age.
Javascript can do this. At any time you can take an existing object and add new methods to it, or change its existing methods. This can be done at the individual object level.
Douglas Crockford writes about this in Classical Inheritance in JavaScript:
Class Augmentation
JavaScript's dynamism allows us to add
or replace methods of an existing
class. We can call the method method
at any time, and all present and
future instances of the class will
have that method. We can literally
extend a class at any time.
Inheritance works retroactively. We
call this Class Augmentation to avoid
confusion with Java's extends, which
means something else.
Object Augmentation
In the static object-oriented
languages, if you want an object which
is slightly different than another
object, you need to define a new
class. In JavaScript, you can add
methods to individual objects without
the need for additional classes. This
has enormous power because you can
write far fewer classes and the
classes you do write can be much
simpler. Recall that JavaScript
objects are like hashtables. You
can add new values at any time. If the
value is a function, then it becomes a
method.
Common Lisp can: use the generic function CHANGE-CLASS.
I am surprised no one so far seemed to notice that this is the exact case for the State design pattern (although #Fadrian in fact described the core idea of the pattern quite precisely - without mentioning its name).
The state pattern is a behavioral software design pattern, also known as
the objects for states pattern. This pattern is used in computer
programming to represent the state of an object. This is a clean way for an
object to partially change its type at runtime.
The referenced page gives examples in Java and Python. Obviously it can be implemented in other strongly typed languages as well. (OTOH weakly typed languages have no need for State, as these support such behaviour out of the box.)