Your opinion - GPRS Internet - Mobile - language-agnostic

Is 8megabytes are a large load if they are transfered via GPRS every day?
How large in terms of size (bytes/kbytes) a get request + response is? (eg 200OK)

Is Equal to R16 per day in my currency.
15
Please ask a specific question.

It depends, fastest GPRS is about 296 kbits/sec. That's 29.5 kbytes/sec. With that it would take 4.5 minutes to transfer. So assuming you could get the MAXIMUM speed it wouldn't be so bad and if you were only doing it once per day.
EDIT
Please not that speed is considering the best situation and EGPRS (EDGE/2G). Accroding to the GPRS spec the highest actual GPRS speeds are 80 kbits/sec or 10 kbytes/sec. Assuming those speeds it would take 13.33~ mins to transfer.

Related

Load large amount of data (10000 signals - time series)

I am analizing how to store over 10000 signals 50 times per second. Probably I will read them from memory. Each signal has a timestamp (8 bytes) and a double (8 bytes). This process will be running 4 hours 1 day a week. Then:
10000 x 50 x 16 = 8 MBS / seconds.
8 x 3600 x 4 = 115 GBS / week.
What database (or other option like files) should I use to store this data quickly. Are MondoDB or Cassandra good options? What language would be good? Is Java enough fast to read data from memory and store in the database or C is a better choice?
Is needed a cluster solution?
Thanks.
Based on your description, I'd suggest Sqlite database. It's very light weight and faster than MySQL and MongoDb.
See benchmark here.
It is roughly 700~800 MB of data per single day - so if you need to query it - after one month- 25 GB will be scanned.
In this case you probably will need a clustered/sharded solution to split the load.
As data will grove constantly - you need to have a dynamic solution which can use mongoDB shards and replica sets to span load and manage data distribution.

code ping time meter - is this really true?

I am using a sort of code_ping for the time it took to process the whole page, to all my pages in my webportal.
I figured if I do a $count_start in the header initialised with current timestamp and a $count_end in the footer, the same, the difference is a meter to roughly let me know how well optimised the page is (queries, loading time of all things in that particular page).
Say for one page i get 0.0075 seconds, for others I get 0.045 etc...i'm working on optimising the queries better this way.
My question is. If one page says by this meter "rough loading time" that has 0.007 seconds,
will 1000 users querying the same page at the same time get each the result in 0.007 * 1000 = 7 seconds ? meaning they will each get the page after 7 seconds ?
thanks
Luckily, it doesn't usually mean that.
The missing variable in your equation is how your database and your application server and anything else in your stack handles concurrency.
To illustrate this strictly from the MySQL perspective, I wrote a test client program that establishes a fixed number of connections to the MySQL server, each in its own thread (and so, able to issue a query to the server at approximately the same time).
Once all of the threads have signaled back that they are connected, a message is sent to all of them at the same time, to send their query.
When each thread gets the "go" signal, it looks at the current system time, then sends the query to the server. When it gets the response, it looks at the system time again, and then sends all of the information back to the main thread, which compares the timings and generates the output below.
The program is written in such a way that it does not count the time required to establish the connections to the server, since in a well-behaved application the connections would be reusable.
The query was SELECT SQL_NO_CACHE COUNT(1) FROM ... (an InnoDB table with about 500 rows in it).
threads 1 min 0.001089 max 0.001089 avg 0.001089 total runtime 0.001089
threads 2 min 0.001200 max 0.002951 avg 0.002076 total runtime 0.003106
threads 4 min 0.000987 max 0.001432 avg 0.001176 total runtime 0.001677
threads 8 min 0.001110 max 0.002789 avg 0.001894 total runtime 0.003796
threads 16 min 0.001222 max 0.005142 avg 0.002707 total runtime 0.005591
threads 32 min 0.001187 max 0.010924 avg 0.003786 total runtime 0.014812
threads 64 min 0.001209 max 0.014941 avg 0.005586 total runtime 0.019841
Times are in seconds. The min/max/avg are the best/worst/average times observed running the same query. At a concurrency of 64, you notice the best case wasn't all that different than the best case with only 1 query. But biggest take-away here is the total runtime column. That value is the difference in time from when the first thread sent its query (they all send their query at essentially the same time, but "precisely" the same time is impossible since I don't have a 64-core machine to run the test script on) to when the last thread received its response.
Observations: the good news is that the 64 queries taking an average of 0.005586 seconds definitely did not require 64 * 0.005586 seconds = 0.357504 seconds to execute... it didn't even require 64 * 0.001089 (the best case time) = 0.069696 All of those queries were started and finished within 0.019841 seconds... or only about 28.5% of the time it would have theoretically taken for them to run one-after-another.
The bad news, of course, is that the average execution time on this query at a concurrency of 64 is over 5 times as high as the time when it's only run once... and the worst case is almost 14 times as high. But that's still far better than a linear extrapolation from the single-query execution time would suggest.
Things don't scale indefinitely, though. As you can see, the performance does deteriorate with concurrency and at some point it would go downhill -- probably fairly rapidly -- as we reached whichever bottleneck occurred first. The number of tables, the nature of the queries, any locking that is encountered, all contribute to how the server performs under concurrent loads, as do the performance of your storage, the size, performance, and architecture, of the system's memory, and the internals of MySQL -- some of which can be tuned and some of which can't.
But of course, the database isn't the only factor. The way the application server handles concurrent requests can be another big part of your performance under load, sometimes to a larger extent than the database, and sometimes less.
One big unknown from your benchmarks is how much of that time is spent by the database answering the queries, how much of the time is spent by the application server executing the logic business, and how much of the time is spent by the code that is rendering the page results into HTML.

Computing estimated times of file copies / movements?

Inspired by this xckd cartoon I wondered exactly what is the best mechanism to provide an estimate to the user of a file copy / movement?
The alt tag on xkcd reads as follows:
They could say "the connection is probably lost," but it's more fun to do naive time-averaging to give you hope that if you wait around for 1,163 hours, it will finally finish.
Ignoring the funny, is that really how it's done in Windows? How about other OS? Is there a better way?
Have a look at my answer to a similar question (and the other answers there) on how the remaining time is estimated in Windows Explorer.
In my opinion, there is only one way to get good estimates:
Calculate the exact number of bytes to be copied before you begin the copy process
Recalculate you estimate regularly (every 1, 5 or 10 seconds, YMMV) based on the current transfer speed
The current transfer speed can fluctuate heavily when you are copying on a network, so use an average, for example based on the amount of bytes transfered since your last estimate.
Note that the first point may require quite some work, if you are copying many files. That is probably why the guys from Microsoft decided to go without it. You need to decide yourself if the additional overhead created by that calculation is worth giving your user a better estimate.
I've done something similar to estimate when a queue will be empty, given that items are being dequeued faster than they are being enqueued. I used linear regression over the most recent N readings of (time,queue size).
This gives better results than a naive
(bytes_copied_so_far / elapsed_time) * bytes_left_to_copy
Start a global timer that fires say, every 1000 milliseconds and update a total elpased time counter. Let's call this variable "elapsedTime"
While the file is being copied, update some local variable with the amount already copied. Let's call this variable "totalCopied"
In the timer event that is periodically raised, divide totalCopied by totalElapsed to give the number of bytes copied per timer interval (in this case, 1000ms). Let's call this variable "bytesPerSec"
Divide the total file size by bytesPerSec and obtain the total number of seconds theoretically required to copy this file. Let's call this variable remainingTime
Subtract elapsedTime from remainingTime and you a somewhat accurate calculation for file copy time.
I think dialogs should just admit their limitations. It's not annoying because it's failing to give a useful time estimate, it's annoying because it's authoritatively offering an estimate that's obvious nonsense.
So, estimate however you like, based on current rate or average rate so far, rolling averages discarding outliers, or whatever. Depends on the operation and the typical durations of events which delay it, so you might have different algorithms when you know the file copy involves a network drive. But until your estimate has been fairly consistent for a period of time equal to the lesser of 30 seconds or 10% of the estimated time, display "oh dear, there seems to be some kind of holdup" when it's massively slowed, or just ignore it if it's massively sped up.
For example, dialog messages taken at 1-second intervals when a connection briefly stalls:
remaining: 60 seconds // estimate is 60 seconds
remaining: 59 seconds // estimate is 59 seconds
remaining: delayed [was 59 seconds] // estimate is 12 hours
remaining: delayed [was 59 seconds] // estimate is infinity
remaining: delayed [was 59 seconds] // got data: estimate is 59 seconds
// six seconds later
remaining: 53 seconds // estimate is 53 seconds
Most of all I would never display seconds (only hours and minutes). I think it's really frustrating when you sit there and wait for a minute while the timer jumps between 10 and 20 seconds. And always display real information like: xxx/yyyy MB copied.
I would also include something like this:
if timeLeft > 5h --> Inform user that this might not work properly
if timeLeft > 10h --> Inform user that there might be better ways to move the file
if timeLeft > 24h --> Abort and check for problems
I would also inform the user if the estimated time varies too much
And if it's not too complicated, there should be an auto-check function that checks if the process is still alive and working properly every 1-10 minutes (depending on the application).
speaking about network file copy, the best thing is to calculate file size to be transfered, network response and etc. An approach that i used once was:
Connection speed = Ping and calculate the round trip time for packages with 15 Kbytes.
Get my file size and see, theorically, how many time it would take if i would break it in
15 kb packages using my connection speed.
Recalculate my connection speed after transfer is started and ajust the time that will be spended.
I've been pondering on this one myself. I have a copy routine - via a Windows Explorer style interface - which allows the transfer of selected files from an Android Device, to a PC.
At the start, I know the total size of the file(s) that are to be copied, and as I am using C#.NET, I am using a Stopwatch, to get the elapsed time, and while the copy is in progress, I am keeping a total of what is copied so far, in terms of bytes.
I haven't actually tested it yet, but the best way seems to be this -
estimated = elapsed * ((totalSize - copiedSoFar) / copiedSoFar)
I never saw it the way you guys are explaining it-by trasfeed bytes & total bytes.
The "experience" always made a lot more sense (not good/accurate) if you instead use bytes of each file, and file count. This is how the estimate swings wildly.
If you are transferring large files first, the estimate goes long-even with the connection static. It is like it naively thinks that all files are the average size of those thus transferred, and then makes a guess assuming that the average file size will remain accurate for the entire time.
This, and the other ways, all get worse when the connection 'speed' varies...

About system data rate in H264

I have a engine to check the H264 video is compliance with AVCHD or BDMV spec, the SPEC mentions the MAX system data rate is up to 24 Mbit/s, I want to know how to calculate the system data rate? Does it mean the average of whole file? Or does it mean the average of 1 second?
The maximum specifies that you that you will never exceed 24Mbps so you will never send more than one bit in any 42nS (approximately) period. You can scale that to any time frame you want by simple multiplication to the point when you will never burst beyond 24M bits in one second (and you will still never send more than one bit in any of the 24M 42nS periods that make up that second).
When you calculate an average for any time period, it MUST be below the specified maximum burst, but is simply considered an average. Those of us in the CATV industry spend a lot of time trying to make the transmission system behave as if the average rate is a constant rate, because if you have a certain throughput (in bits) for video, you don't want to waste any of it. We "rate shape" the video as well as using adaptive buffering in the digital set-top boxes that receive the signal.
A single QAM256 channel on the U.S. broadband cable system will support 40Mbps and usually between 10 and 12 normal definition signals with an average bit rate of approximately 4Mbps. These channels will burst to 9Mbps when there is a lot of change in the picture of an unpredictable nature. As you can imagine, a boxing match (with a lot of movement) takes significantly more bandwidth, than a network news anchor reading from their desk, so we also try to match channels to fill this available bandwidth.
Typically, we can only fit 3 high-definition channels in the same 40Mbps channel and these have an average bit rate of about 12.5Mbps and as you've noted above, are limited to 24Mbps.
Hope this helps!

Can MySQL Cluster handle a terabyte database

I have to look into solutions for providing a MySQL database that can handle data volumes in the terabyte range and be highly available (five nines). Each database row is likely to have a timestamp and up to 30 float values. The expected workload is up to 2500 inserts/sec. Queries are likely to be less frequent but could be large (maybe involving 100Gb of data) though probably only involving single tables.
I have been looking at MySQL Cluster given that is their HA offering. Due to the volume of data I would need to make use of disk based storage. Realistically I think only the timestamps could be held in memory and all other data would need to be stored on disk.
Does anyone have experience of using MySQL Cluster on a database of this scale? Is it even viable? How does disk based storage affect performance?
I am also open to other suggestions for how to achieve the desired availability for this volume of data. For example, would it be better to use a third party libary like Sequoia to handle the clustering of standard MySQL instances? Or a more straight forward solution based on MySQL replication?
The only condition is that it must be a MySQL based solution. I don't think that MySQL is the best way to go for the data we are dealing with but it is a hard requirement.
Speed wise, it can be handled. Size wise, the question is not the size of your data, but rather the size of your index as the indices must fit fully within memory.
I'd be happy to offer a better answer, but high-end database work is very task-dependent. I'd need to know a lot more about what's going on with the data to be of further help.
Okay, I did read the part about mySQL being a hard requirement.
So with that said, let me first point out that the workload you're talking about -- 2500 inserts/sec, rare queries, queries likely to have result sets of up to 10 percent of the whole data set -- is just about pessimal for any relational data base system.
(This rather reminds me of a project, long ago, where I had a hard requirement to load 100 megabytes of program data over a 9600 baud RS-422 line (also a hard requirement) in less than 300 seconds (also a hard requirement.) The fact that 1kbyte/sec × 300 seconds = 300kbytes didn't seem to communicate.)
Then there's the part about "contain up to 30 floats." The phrasing at least suggests that the number of samples per insert is variable, which suggests in turn some normaliztion issues -- or else needing to make each row 30 entries wide and use NULLs.
But with all that said, okay, you're talking about 300Kbytes/sec and 2500 TPS (assuming this really is a sequence of unrelated samples). This set of benchmarks, at least, suggests it's not out of the realm of possibility.
This article is really helpful in identifying what can slow down a large MySQL database.
Possibly try out hibernate shards and run MySQL on 10 nodes with 1/2 terabyte each so you can handle 5 terabytes then ;) well over your limit I think?