i have implemented 2DCNN model followed by GRU layer
class CNN2D(nn.Module):
def __init__(self, img_x=88, img_y=88, fc_hidden1=512, fc_hidden2=512, drop_p=0.3, CNN_embed_dim=512,num_classes=9):
super(CNN2D, self).__init__()
self.img_x = img_x
self.img_y = img_y
self.CNN_embed_dim = CNN_embed_dim
self.ch1, self.ch2, self.ch3, self.ch4 = 8, 16, 32, 64
self.k1, self.k2, self.k3, self.k4 = (5, 5), (3, 3), (3, 3), (3, 3)
self.s1, self.s2, self.s3, self.s4 = (2, 2), (2, 2), (2, 2), (2, 2)
self.pd1, self.pd2, self.pd3, self.pd4 = (0, 0), (0, 0), (0, 0), (0, 0)
self.conv1_outshape = conv2D_output_size((self.img_x, self.img_y), self.pd1, self.k1, self.s1) # Conv1 output shape
self.conv2_outshape = conv2D_output_size(self.conv1_outshape, self.pd2, self.k2, self.s2)
self.conv3_outshape = conv2D_output_size(self.conv2_outshape, self.pd3, self.k3, self.s3)
self.conv4_outshape = conv2D_output_size(self.conv3_outshape, self.pd4, self.k4, self.s4)
# fully connected layer hidden nodes
self.fc_hidden1, self.fc_hidden2 = fc_hidden1, fc_hidden2
self.drop_p = drop_p
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=self.ch1, kernel_size=self.k1, stride=self.s1, padding=self.pd1),
nn.BatchNorm2d(self.ch1, momentum=0.01),
nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=2),
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_channels=self.ch1, out_channels=self.ch2, kernel_size=self.k2, stride=self.s2, padding=self.pd2),
nn.BatchNorm2d(self.ch2, momentum=0.01),
nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=2),
)
self.conv3 = nn.Sequential(
nn.Conv2d(in_channels=self.ch2, out_channels=self.ch3, kernel_size=self.k3, stride=self.s3, padding=self.pd3),
nn.BatchNorm2d(self.ch3, momentum=0.01),
nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=2),
)
self.conv4 = nn.Sequential(
nn.Conv2d(in_channels=self.ch3, out_channels=self.ch4, kernel_size=self.k4, stride=self.s4, padding=self.pd4),
nn.BatchNorm2d(self.ch4, momentum=0.01),
nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=2),
)
self.drop = nn.Dropout2d(self.drop_p)
self.pool = nn.MaxPool2d(2)
#self.fc1 = nn.Linear(self.ch4 * self.conv4_outshape[0] * self.conv4_outshape[1], self.fc_hidden1) # fully connected layer, output k classes
#self.fc2 = nn.Linear(self.fc_hidden1, self.fc_hidden2)
self.fc3 = nn.Linear(self.ch4 * self.conv4_outshape[0] * self.conv4_outshape[1], self.CNN_embed_dim) # output = CNN embedding latent variables
self.num_classes = num_classes
self.gru = nn.GRU(
input_size=self.CNN_embed_dim,
hidden_size=256,
num_layers=1,
batch_first=True,(batch, time_step, input_size)
)
#self.gfc1 = nn.Linear(256, 128)
self.gfc2 = nn.Linear(256, self.num_classes)
def forward(self, x_3d):
cnn_embed_seq = []
for t in range(x_3d.size(2)):
# CNNs
x = self.conv1(x_3d[:, :, t, :, :])
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = x.reshape(x.size(0), -1)
x = F.relu(self.fc1(x))
x = F.dropout(x, p=self.drop_p, training=self.training)
x = F.relu(self.fc2(x))
x = F.dropout(x, p=self.drop_p, training=self.training)
x = self.fc3(x)
cnn_embed_seq.append(x)
cnn_embed_seq = torch.stack(cnn_embed_seq, dim=0).transpose_(0, 1)
RNN_out, _ = self.gru(cnn_embed_seq, None)
x = RNN_out[:, -1, :]
x = F.relu(x)
x = F.dropout(x, p=self.drop_p, training=self.training) NEW UPDATE
x = self.gfc2(x)
return x
inputs are videos of shape [batch,channels,frames,height,width]
i used adam optimizer with lr=1e-5 ,weight_decay=5e-5 ,amsgrad=True and cross entropy loss
training and validation losses are decreasing slowly and model is not converging
what should i change ?
Related
I want to predict three outputs, the model is as follows. the features of input is 9, output is 3.
class DNN(nn.Module):
def __init__(self, n_features):
self.n_features = n_features
super(DNN, self).__init__()
self.inlayer1 = nn.Linear(self.n_features, 16)
self.layer2 = nn.Linear(16, 32)
self.layer3 = nn.Linear(32, 64)
self.layer4 = nn.Linear(64, 128)
self.layer5 = nn.Linear(128, 256)
self.layer6 = nn.Linear(256, 256)
self.layer7 = nn.Linear(256, 128)
self.layer8 = nn.Linear(128, 64)
self.layer9 = nn.Linear(64, 32)
self.layer10 = nn.Linear(32, 16)
self.outlayer = nn.Linear(16, 3)
def forward(self, x):
x = F.elu(self.inlayer1(x))
x = F.elu(self.layer2(x))
x = F.elu(self.layer3(x))
x = F.elu(self.layer4(x))
x = F.elu(self.layer5(x))
x = F.elu(self.layer6(x))
x = F.elu(self.layer7(x))
x = F.elu(self.layer8(x))
x = F.elu(self.layer9(x))
x = F.elu(self.layer10(x))
out = self.outlayer(x)
return out
The train code
def train(net, train_features, train_labels, test_features, test_labels,
num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
optimizer = torch.optim.Adam(net.parameters(),
lr = learning_rate,
weight_decay = weight_decay)
for epoch in range(num_epochs):
for X, y in train_iter:
optimizer.zero_grad()
out = net(X) ##out.shape is (100 samples, 3 labels)
loss = MSEloss(out, y)
loss.backward()
optimizer.step()
train_ls.append(MSEloss(net(train_features), train_labels).item())
if test_labels is not None:
test_ls.append(MSEloss(net(test_features), test_labels).item())
return train_ls, test_ls
after running the model, the below result is incorrect, but i don't know where is the bug? It seems that only the first col label is right. Should i change my method of calculating loss?
the below is the result.
the R2 and MSE metrics for three outputs
I tried to calculate the three outputs(out1, out2, out3) separately by change the number of output neurons to 1, then calculate the weighted loss, but it didn't work, even all three outputs are not close to the real label.
I am doing a deep learning project (binary classification) with a ResNet on small datasets (896 total images). I have tried several models where ResNet gives me the best performance even though the model sufferers from exploding gradients with SGD optimizers (Adam converges faster but fluctuates much more). (Code source)
But the model performs better when I try ResNetv50 using transfer learning without initializing any weights (weights = None).
To my understanding, both models should perform similarly, but due to less coding experience, I failed to understand I got a different result.
def identity_block(input_tensor, kernel_size, filters, stage, block):
filters1, filters2, filters3 = filters
bn_axis = 3
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = layers.Conv2D(filters1, (1, 1),
kernel_initializer='he_normal',
name=conv_name_base + '2a')(input_tensor)
x = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters2, kernel_size,
padding='same',
kernel_initializer='he_normal',
name=conv_name_base + '2b')(x)
x = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters3, (1, 1),
kernel_initializer='he_normal',
name=conv_name_base + '2c')(x)
x = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
x = layers.add([x, input_tensor])
x = layers.Activation('relu')(x)
return x
def conv_block(input_tensor,
kernel_size,
filters,
stage,
block,
strides=(2, 2)):
filters1, filters2, filters3 = filters
bn_axis = 3
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = layers.Conv2D(filters1, (1, 1), strides=strides,
kernel_initializer='he_normal',
name=conv_name_base + '2a')(input_tensor)
x = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters2, kernel_size, padding='same',
kernel_initializer='he_normal',
name=conv_name_base + '2b')(x)
x = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters3, (1, 1),
kernel_initializer='he_normal',
name=conv_name_base + '2c')(x)
x = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
shortcut = layers.Conv2D(filters3, (1, 1), strides=strides,
kernel_initializer='he_normal',
name=conv_name_base + '1')(input_tensor)
shortcut = layers.BatchNormalization(
axis=bn_axis, name=bn_name_base + '1')(shortcut)
x = layers.add([x, shortcut])
x = layers.Activation('relu')(x)
return x
def ResNet50(input_shape, classes):
bn_axis = 3
img_input = Input(input_shape)
x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(img_input)
x = layers.Conv2D(64, (7, 7),
strides=(2, 2),
padding='valid',
kernel_initializer='he_normal',
name='conv1')(img_input)
x = layers.BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = layers.Activation('relu')(x)
x = layers.ZeroPadding2D(padding=(1, 1), name='pool1_pad')(x)
x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
x = layers.Dense(classes, activation='sigmoid', name='fc')(x)
# Create model.
model = models.Model(inputs = img_input, outputs = x, name='resnet50')
return model
model_resnet = ResNet50(input_shape = (3, 256, 256), classes = 1)
# compile model
model_resnet.compile(loss='binary_crossentropy',
optimizer=tf.keras.optimizers.Adam(learning_rate = 0.0001),
metrics=['accuracy', 'Recall', 'Precision'])
# make directory for logs
logdir = os.path.join('logs', model_name)
#os.mkdir(logdir)
from math import floor
N_FLODS = 5
INIT_LR = 1e-4 # 0.001
T_BS = 16
V_BS = 16
decay_rate = 0.95
decay_step = 1
# early stopping
cp = EarlyStopping(monitor ='val_loss', mode = 'min', verbose = 2, patience = PATIENCE, restore_best_weights=True)
mc = ModelCheckpoint(model_name, monitor = 'val_loss', mode = 'min', verbose = 2, save_best_only = True)
tsb = TensorBoard(log_dir=logdir)
lrs = LearningRateScheduler(lambda epoch : INIT_LR * pow(decay_rate, floor(epoch / decay_step)))
# training
start = timer()
# Fit the model
history_resnet= model_resnet.fit(train_g1,
epochs=1000,
steps_per_epoch=len(train_g),
validation_data=val_g,
validation_steps=len(val_g),
callbacks= [cp, mc, tsb])
end = timer()
elapsed = end - start
print('Total Time Elapsed: ', int(elapsed//60), ' minutes ', (round(elapsed%60)), ' seconds')
I have an RGB image of mask for Segmentation of dimensions 900x600 (width, height)
My U-Net code is the ff. I do not really want to resize the output too much it is fine if it is resized without losing much of the aspect ratio.
import torch
import torch.nn as nn
from torchvision import models
def convrelu(in_channels, out_channels, kernel, padding):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel, padding=padding),
nn.ReLU(inplace=True)
)
class ResNetUNet(nn.Module):
def __init__(self, n_class=1):
super().__init__()
self.base_model = models.resnet18(pretrained=True)
self.base_layers = list(self.base_model.children())
self.layer0 = nn.Sequential(*self.base_layers[:3]) # size=(N, 64, x.H/2, x.W/2)
self.layer0_1x1 = convrelu(64, 64, 1, 0)
self.layer1 = nn.Sequential(*self.base_layers[3:5]) # size=(N, 64, x.H/4, x.W/4)
self.layer1_1x1 = convrelu(64, 64, 1, 0)
self.layer2 = self.base_layers[5] # size=(N, 128, x.H/8, x.W/8)
self.layer2_1x1 = convrelu(128, 128, 1, 0)
self.layer3 = self.base_layers[6] # size=(N, 256, x.H/16, x.W/16)
self.layer3_1x1 = convrelu(256, 256, 1, 0)
self.layer4 = self.base_layers[7] # size=(N, 512, x.H/32, x.W/32)
self.layer4_1x1 = convrelu(512, 512, 1, 0)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv_up3 = convrelu(256 + 512, 512, 3, 1)
self.conv_up2 = convrelu(128 + 512, 256, 3, 1)
self.conv_up1 = convrelu(64 + 256, 256, 3, 1)
self.conv_up0 = convrelu(64 + 256, 128, 3, 1)
self.conv_original_size0 = convrelu(3, 64, 3, 1)
self.conv_original_size1 = convrelu(64, 64, 3, 1)
self.conv_original_size2 = convrelu(64 + 128, 64, 3, 1)
self.conv_last = nn.Conv2d(64, n_class, 1)
def forward(self, input):
x_original = self.conv_original_size0(input)
x_original = self.conv_original_size1(x_original)
layer0 = self.layer0(input)
layer1 = self.layer1(layer0)
layer2 = self.layer2(layer1)
layer3 = self.layer3(layer2)
layer4 = self.layer4(layer3)
layer4 = self.layer4_1x1(layer4)
x = self.upsample(layer4)
layer3 = self.layer3_1x1(layer3)
x = torch.cat([x, layer3], dim=1)
x = self.conv_up3(x)
x = self.upsample(x)
layer2 = self.layer2_1x1(layer2)
x = torch.cat([x, layer2], dim=1)
x = self.conv_up2(x)
x = self.upsample(x)
layer1 = self.layer1_1x1(layer1)
x = torch.cat([x, layer1], dim=1)
x = self.conv_up1(x)
x = self.upsample(x)
layer0 = self.layer0_1x1(layer0)
x = torch.cat([x, layer0], dim=1)
x = self.conv_up0(x)
x = self.upsample(x)
x = torch.cat([x, x_original], dim=1)
x = self.conv_original_size2(x)
out = self.conv_last(x)
return out
for this command
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ResNetUNet()
model = model.to(device)
# check keras-like model summary using torchsummary
from torchsummary import summary
summary(model, input_size=(3, 600, 900))
it throws the error:
54 x = self.upsample(layer4)
55 layer3 = self.layer3_1x1(layer3)
---> 56 x = torch.cat([x, layer3], dim=1)
57 x = self.conv_up3(x)
58
RuntimeError: Sizes of tensors must match except in dimension 3. Got 57 and 58
Not sure what to do here. Could someone help me how to solve this?
Try this. You just need to match tensor shapes before torch.cat.
import torch
import torch.nn as nn
from torchvision import models
import torch.nn.functional as F
def match_shapes(x, y):
if x.shape[-2:] != y.shape[-2:]:
x = F.interpolate(x, y.shape[-2:], mode='nearest')
return x
def convrelu(in_channels, out_channels, kernel, padding):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel, padding=padding),
nn.ReLU(inplace=True)
)
class ResNetUNet(nn.Module):
def __init__(self, n_class=1):
super().__init__()
self.base_model = models.resnet18(pretrained=True)
self.base_layers = list(self.base_model.children())
self.layer0 = nn.Sequential(*self.base_layers[:3]) # size=(N, 64, x.H/2, x.W/2)
self.layer0_1x1 = convrelu(64, 64, 1, 0)
self.layer1 = nn.Sequential(*self.base_layers[3:5]) # size=(N, 64, x.H/4, x.W/4)
self.layer1_1x1 = convrelu(64, 64, 1, 0)
self.layer2 = self.base_layers[5] # size=(N, 128, x.H/8, x.W/8)
self.layer2_1x1 = convrelu(128, 128, 1, 0)
self.layer3 = self.base_layers[6] # size=(N, 256, x.H/16, x.W/16)
self.layer3_1x1 = convrelu(256, 256, 1, 0)
self.layer4 = self.base_layers[7] # size=(N, 512, x.H/32, x.W/32)
self.layer4_1x1 = convrelu(512, 512, 1, 0)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv_up3 = convrelu(256 + 512, 512, 3, 1)
self.conv_up2 = convrelu(128 + 512, 256, 3, 1)
self.conv_up1 = convrelu(64 + 256, 256, 3, 1)
self.conv_up0 = convrelu(64 + 256, 128, 3, 1)
self.conv_original_size0 = convrelu(3, 64, 3, 1)
self.conv_original_size1 = convrelu(64, 64, 3, 1)
self.conv_original_size2 = convrelu(64 + 128, 64, 3, 1)
self.conv_last = nn.Conv2d(64, n_class, 1)
def forward(self, input):
x_original = self.conv_original_size0(input)
x_original = self.conv_original_size1(x_original)
layer0 = self.layer0(input)
layer1 = self.layer1(layer0)
layer2 = self.layer2(layer1)
layer3 = self.layer3(layer2)
layer4 = self.layer4(layer3)
layer4 = self.layer4_1x1(layer4)
x = self.upsample(layer4)
layer3 = self.layer3_1x1(layer3)
x = match_shapes(x, layer3)
x = torch.cat([x, layer3], dim=1)
x = self.conv_up3(x)
x = self.upsample(x)
layer2 = self.layer2_1x1(layer2)
x = match_shapes(x, layer2)
x = torch.cat([x, layer2], dim=1)
x = self.conv_up2(x)
x = self.upsample(x)
layer1 = self.layer1_1x1(layer1)
x = match_shapes(x, layer1)
x = torch.cat([x, layer1], dim=1)
x = self.conv_up1(x)
x = self.upsample(x)
layer0 = self.layer0_1x1(layer0)
x = torch.cat([x, layer0], dim=1)
x = self.conv_up0(x)
x = self.upsample(x)
x = torch.cat([x, x_original], dim=1)
x = self.conv_original_size2(x)
out = self.conv_last(x)
return out
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ResNetUNet()
model = model.to(device)
# check keras-like model summary using torchsummary
from torchsummary import summary
summary(model, input_size=(3, 600, 900))
I made my custom model, AlexNetQIL (Alexnet with QIL layer)
'QIL' means quantization intervals learning
I trained my model and loss value didn't decrease at all and I found out parameters in my model were not updated at all because of QIL layer I added
I attached my codes AlexNetQil and qil
please someone let me know what's the problem in my codes
AlexNetQIL
import torch
import torch.nn as nn
from qil import *
class AlexNetQIL(nn.Module):
#def __init__(self, num_classes=1000): for imagenet
def __init__(self, num_classes=10): # for cifar-10
super(AlexNetQIL, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU(inplace=True)
self.maxpool1 = nn.MaxPool2d(kernel_size=2)
self.qil2 = Qil()
self.conv2 = nn.Conv2d(64, 192, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(192)
self.relu2 = nn.ReLU(inplace=True)
self.maxpool2 = nn.MaxPool2d(kernel_size=2)
self.qil3 = Qil()
self.conv3 = nn.Conv2d(192, 384, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(384)
self.relu3 = nn.ReLU(inplace=True)
self.qil4 = Qil()
self.conv4 = nn.Conv2d(384, 256, kernel_size=3, padding=1)
self.bn4 = nn.BatchNorm2d(256)
self.relu4 = nn.ReLU(inplace=True)
self.qil5 = Qil()
self.conv5 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.bn5 = nn.BatchNorm2d(256)
self.relu5 = nn.ReLU(inplace=True)
self.maxpool5 = nn.MaxPool2d(kernel_size=2)
self.classifier = nn.Sequential(
nn.Linear(256 * 2 * 2, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self,x,inference = False):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu2(x)
x = self.maxpool1(x)
x,self.conv2.weight = self.qil2(x,self.conv2.weight,inference ) # if I remove this line, No problem
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.maxpool2(x)
x,self.conv3.weight = self.qil3(x,self.conv3.weight,inference ) # if I remove this line, No problem
x = self.conv3(x)
x = self.bn3(x)
x = self.relu3(x)
x,self.conv4.weight = self.qil4(x,self.conv4.weight,inference ) # if I remove this line, No problem
x = self.conv4(x)
x = self.bn4(x)
x = self.relu4(x)
x,self.conv5.weight = self.qil5(x,self.conv5.weight,inference ) # if I remove this line, No problem
x = self.conv5(x)
x = self.bn5(x)
x = self.relu5(x)
x = self.maxpool5(x)
x = x.view(x.size(0),256 * 2 * 2)
x = self.classifier(x)
return x
QIL
forward
quantize weights and input activation with 2 steps
transformer(params) -> discretizer(params)
import torch
import torch.nn as nn
import numpy as np
import copy
#Qil (Quantize intervals learning)
class Qil(nn.Module):
discretization_level = 32
def __init__(self):
super(Qil,self).__init__()
self.cw = nn.Parameter(torch.rand(1)) # I have to train this interval parameter
self.dw = nn.Parameter(torch.rand(1)) # I have to train this interval parameter
self.cx = nn.Parameter(torch.rand(1)) # I have to train this interval parameter
self.dx = nn.Parameter(torch.rand(1)) # I have to train this interval parameter
self.gamma = nn.Parameter(torch.tensor(1.0)) # I have to train this transformer parameter
self.a = Qil.discretization_level
def forward(self,x,weights,Inference = False):
if not Inference:
weights = self.transfomer_weights(weights)
weights = self.discretizer(weights)
x = self.transfomer_activation(x)
x = self.discretizer(x)
return torch.nn.Parameter(x), torch.nn.Parameter(weights)
def transfomer_weights(self,weights):
device = weights.device
aw,bw = (0.5 / self.dw) , (-0.5*self.cw / self.dw + 0.5)
weights = torch.where( abs(weights) < self.cw - self.dw,
torch.tensor(0.).to(device),weights)
weights = torch.where( abs(weights) > self.cw + self.dw,
weights.sign(), weights)
weights = torch.where( (abs(weights) >= self.cw - self.dw) & (abs(weights) <= self.cw + self.dw),
(aw*abs(weights) + bw)**self.gamma * weights.sign() , weights)
return weights
def transfomer_activation(self,x):
device = x.device
ax,bx = (0.5 / self.dx) , (-0.5*self.cx / self.dx + 0.5)
x = torch.where(x < self.cx - self.dx,
torch.tensor(0.).to(device),x)
x = torch.where(x > self.cx + self.dx,
torch.tensor(1.0).to(device),x)
x = torch.where( (abs(x) >= self.cx - self.dx) & (abs(x) <= self.cx + self.dx),
ax*abs(x) + bx, x)
return x
def discretizer(self,tensor):
q_D = pow(2, Qil.discretization_level)
tensor = torch.round(tensor * q_D) / q_D
return tensor
I am trying to follow sentdex's game ai bot tutorial(https://www.youtube.com/watch?v=G-KvpNGudLw), but instead of tflearn, I am trying to use keras for the same implementation.
Model Function
def neural_network_model(input_size):
network = Sequential()
network.add(Dense(units = 128, activation='relu', kernel_initializer = 'uniform', input_shape = [None, input_size, 1]))
network.add(Dropout(0.2))
network.add(Dense(units = 256, activation='relu', kernel_initializer = 'uniform'))
network.add(Dropout(0.2))
network.add(Dense(units = 512, activation='relu', kernel_initializer = 'uniform'))
network.add(Dropout(0.2))
network.add(Dense(units = 256, activation='relu', kernel_initializer = 'uniform'))
network.add(Dropout(0.2))
network.add(Dense(units = 128, activation='relu', kernel_initializer = 'uniform'))
network.add(Dropout(0.2))
network.add(Dense(units = 2, activation = 'softmax', kernel_initializer = 'uniform'))
adam = optimizers.Adam(lr=LR, decay=0.0)
network.compile(optimizer=adam, loss='categorical_crossentropy', metrics = ['accuracy'])
return network
Model Training Function
def train_model(training_data, model=False):
X = np.array([i[0] for i in training_data]).reshape(-1, len(training_data[0][0]), 1)
Y = [i[1] for i in training_data]
if not model:
model = neural_network_model(len(X[0]))
model.fit(X,Y, epochs = 5)
return model
where the training data is :
def initial_population():
training_data = [] # Observations and the move made, append to only when score > 50
scores = []
accepted_scores = []
for x in range(initial_games):
score = 0
game_memory = []
prev_observation = []
for x in range(goal_steps):
action = random.randrange(0,2) # 0's and 1's
observation, reward, done, info = env.step(action)
if len(prev_observation) > 0 :
game_memory.append([prev_observation,action])
prev_observation = observation
score += reward
if done:
break
if score >= score_requirement:
accepted_scores.append(score)
for data in game_memory:
if data[1] == 1:
output = [0,1]
if data[1] == 0:
output = [1,0]
training_data.append([data[0], output])
env.reset()
scores.append(score)
training_data_save = np.array(training_data)
np.save('saved.npy', training_data_save)
print('Average accepted score : ', mean(accepted_scores))
print('Median accepted scores : ', median(accepted_scores))
print(Counter(accepted_scores))
return training_data
training_data = initial_population()
The error I am getting is in the title. I am new to deep learning and I don't have a good grasp yet on the reshaping part.
So after a bit tweaking I finally got the network to work. If anyone is interested, I fixed it by doing the following:
I changed the first Dense layer to :
network.add(Dense(units = 128, activation='relu', kernel_initializer = 'uniform', input_dim = input_size))
and in the model training function, I changed the shape of the input to 2D instead of 3D :
def train_model(training_data, model=False):
X = np.array([i[0] for i in training_data]).reshape(-1, len(training_data[0][0]))
Y = np.array([i[1] for i in training_data])
if not model:
model = neural_network_model(len(X[0]))
model.fit(X,Y, epochs = 5)
return model