I have a system where two different models of USB printers can be connected, but only one will be connected at a time. My software will print using the lp command. I can print correctly on the two printers specifying the connected model with the -d flag. I'd like to have lp to automatically detect the connected printer, and print on it.
How to do this?
I tried using classes. I've added the two printers to a class:
root#localhost:~/App# lpstat -c LabelWriterClass
members of class LabelWriterClass:
LabelWriter-550
LabelWriter-450
Then I run the print command with the class as destination:
lp -o media=Custom.167x188 -d LabelWriterClass label.pdf
It is somehow working, but it looks like it sends the first print jopb to the first printer on the class, the second job to the second printer, the third job to the first, ... I say this because, after launching a new print job, it won't print on the connected printer (that printed the last job), but as soon as I connect the other one it prints the pending job. If I send two consecutive commands, the first doesn't run (will run once I connect the other printer, as said), while the second will be printed on the currently connected printer.
Is this the expected behavior?
On this page I read
Alternatively, a class might contain several printers that are used in a particular order. The LP print service always checks for an available printer in the order in which printers were added to a class. Therefore, if you want a high-speed printer to be accessed first, add the high-speed printer to the class before you add a low-speed printer. As a result, the high-speed printer handles as many print requests as possible. The low-speed printer is reserved as a backup printer when the high-speed printer is in use.
What I get from this is that lp tries to print with the first printer in the list (LabelWriter-550 in my case), and if it fails, it tries the next in the list. But, as described, I'm getting a different behavior.
-- EDIT --
I implemented a workaround; I check the connected printer by parsing the output of lsusb, and send the lp command with the -d <printer> option. Quite dirty and a little slower, but does the trick.
If a cups-only solution emerge, I'll be glad to hear it.
Related
While performing loadtests on WSO2 BPS 3.2.0 we`ve ran onto the problem.
Let me tell you more about out project and our actions.
Our BPS process is designed to manage some interactions with 3 systems. Basically it is "spread" on two parts - first one to CREATE INSTANCE in one of systems, then waiting a bit, and then SELECT OFFER in instance context.
In real life it looks like: user wants to get a product, the application asks system for an offers and then the user selects offer from available ones.
IN BPS the first part is a straight-forward process, the second part is spread on two flows - one to refresh information with a new offers, and another is to wait if the user chooses one of them.
Our aim is to stand about 1000-1500 simulatious threads on the load-test. An external systems are simulated by mockups executed by LoadUI.
We can achieve our goal if we disable "Process-Level Monitoring Events" in deployment descriptor (set it to "none") of our process. Everything goes well and smooth for hours.
But if we enable this feature (and we need to), everything falls with an error very soon (on about 100-200 run):
[2015-07-28 17:47:02,573] ERROR {org.wso2.carbon.bpel.core.ode.integration.BPELProcessProxy} - Error processing response for MEX null
java.lang.NullPointerException
at org.wso2.carbon.bpel.core.ode.integration.BPELProcessProxy.onResponse(BPELProcessProxy.java:402)
at org.wso2.carbon.bpel.core.ode.integration.BPELProcessProxy.onAxisServiceInvoke(BPELProcessProxy.java:187)
at
[....Et cetera....]
After the first appearance of this error another one type appears - other threads just fall after the timeout.
It seems that database is ok (by the way, it is MySQL 5.6.25). The dashboard shows no extreme levels of input or output.
So I think the BPS itself makes a bottleneck. We have gave it 8gb heap and its conf options are set for extreme amounts of threads (if it possible negative values are set and if not - just ridiculously big like 100000).
Anyone has ever faced this problem? Appreciate any help very much.
Solved in BPS 3.5.0 version, refer to release-notes
I have a lab instrument from the late 1980's that has a printer as its sole storable data output (it gives you the readout on the screen in real time but does not save it to memory, as it has none, you can just view the last measured data point).The printer is an Epson FX1050 but the instrument also has the option of using an "HP" printer (just putting it out there as I understand the standards are different in both cases). The instrument itself performs measurements and the calculations to get to the results that become the output. The time the instrument takes to perform the task will vary between samples.
I went ahead and purchased a data collection software "Collect 6.1" by labsoft/Perkin ELmer to see if it was the solution to my problems. I understand a bit about data parsing but the tech was a bit overwhelmed at the amount of data a single measurment would generate (over 100 lines) with only a couple of specific places where the same text would ever get repeated and I have not had any luck getting it to parse the data the way I want to, I think it times out even though I am setting the timing out very high, measurments are about 3 minutes on average. I can get it to see what is being sent but it does not do much with it, and I can only view it while in test mode and it gets saved as text.
After many frustrating days I am trying to change my approach. I have an article from 1995 where they connected this same instrument to an external computer with a communications software (PROCOMM which downloaded an ASCII file) and then they converted it to Lotus 123 / Excel for data processing. I would be in "hog heaven" if I could do something similar but I am thinking a printer file might be easier to work with. The instrument has the option for setting up hardware handshakes, CTS output, RTS input, etc... and from my failed attempts with the Collect software I know I am using the correct cables to get data from the instrument to the computer but now I am thinking of switching cables and just trying to get the printer output into the computer if there is an "easy" windows based importer for the printer output data.
The advantage of the "printer output" is that only the critical numbers, with the results, are sent, saving me from sorting through the individual measurements. I have read the other "intercepting printer data" questions and I did not find them 100% applicable.
As a warning, I am not particularly talented with computer softwares, apps or macros, just the basic windows type stuff and some better than average Excel skills. I stumbled across this forum as there were other printer data exporting questions and I became hopeful. Thanks in advance.
The mention of CTS and RTS suggests you have a UART between the instrument and the printer. Have you managed to capture any of this data in to a file? If so, could you supply a sample?
One gotcha is that the instrument might be running some sort of protocol against the printer, and won't emit the data without the right responses from the real printer. If that's the case, and you're planning on replacing the printer with a PC, then you might need to get the PC to spoof these responses to keep the instrument happy.
If you are keen on parsing the data yourself, you could write an application in the language of your choice that responds to whatever the UART spits out, then extracts the good bits. If you can do Regular Expressions, that would be a great help in parsing this kind of stuff - you can match on the features surrounding the data, then capture the important data and emit it to a .csv or whatever.
Good luck with this.
I really enjoy using Chrome's URL bar because it remembers commonly-visited sites and often suggests a good completion based on what I've typed and/or visited before. So, for example, I can type t in the URL bar and Chrome will automatically fill it in with twitter.com, or I can type maps and Chrome will fill in the .google.com. This gives me the convenience of data-driven domain name shortcuts without having to maintain an explicit list.
What I'm wondering, though, is how Chrome determines that an old shortcut should be replaced with a new one. For example, if I visit twitter.com often, then that becomes the completion when I type t. But if I then start visiting twilio.com often enough, then, after some time, Chrome will start to fill that in as the default completion for t. What I can't figure out is how or when that transition takes place. It also seems that there are (at least) two cases involved : one for domain names, and another for path strings, because if I visit a certain full URL often, and then want to get to the root of the same domain, I end up having to type the entire domain name out to get Chrome to ignore the full-URL completion.
If I had to guess, I'd imagine that Chrome stores the things that I type in the URL bar in a trie whose values are the number of times that a particular string has been typed (and/or visited ?). Then I'd imagine it has some sort of exponential decay model for the "counts" in the trie. But this is just a guess. Does anyone know how this updating process happens ?
Well, I ended up finding some answers by having a look at the Chromium source code ; I'd imagine that Chrome itself uses this code without too much modification.
When you type something into the search/URL bar (which is apparently called the "Omnibox"), Chrome starts looking for suggestions and completions that match what you've typed. To do this, there are several "providers" registered with the browser, each of which knows how to make a particular type of suggestion. The URL history provider is one of these.
The querying process is pretty cool, actually. It all happens asynchronously, with particular attention paid to which activity happens in which thread (the main thread being especially important not to block). When the providers find suggestions, they call back to the omnibox, which appears to merge and sort things before updating the UI widget.
History provider
It turns out that URLs in Chrome are stored in at least one, and probably two, sqlite databases (one is on disk, and the second, which I know less about, seems to be in memory).
This comment at the top of HistoryURLProvider explains the lookup process, complete with multithreaded ASCII art !
Sqlite lookup
Basically, typing in the omnibox causes sqlite to run this SQL query for looking up URLs by prefix. The suggestions are ordered by the number of visits to the URL, as well as by the number of times that a URL has been typed.
Interestingly, this is not a trie ! The lookup is indeed based on prefix, but the scoring of those lookups does not appear to be aggregated by prefix, like I'd imagined.
I had a little less success in determining how the scores in the database are updated. This part of the code updates a URL after a visit, but I haven't yet run across where the counts are decremented (if at all ?).
Updating suggestions
What I think is happening regarding the updating of suggestions -- and this is still just a guess right now -- is that the in-memory sqlite database essentially has priority over the on-disk DB, and then whenever Chrome restarts or otherwise flushes the contents of the in-memory DB to disk, the visit and typed counts for each URL get updated at that time. Again, just a guess, but I'll keep looking as I get time.
The code is really nice to read through, actually. I definitely recommend it if you have similar questions about Chrome.
I am practicing reversing skill using OLLdbg under windows.
there is an interactive window asking you input, let's say "serial number". My question is when user operate on the window, it is hard to locate related data flow within the debugger window. For example, if I click "F9", we can view the instruction flow; but When inputing on the window, I can't know which instructions have been executed.
My target is to find some jump instruction and change it, so that I can bypass the correct input requirement. I think the instruction should be quite close to instruction related to arg#, and related to TEST command.
Looking for hint or trick. Thanks.
One thing you could do is type something in the text field and then use an application such as Cheat Engine to find out where in the memory these characters are stored. Then you can put a memory (on access) breakpoint on the address of the first character in ollydbg. Then press the button that verifies the serial. When an instructions accesses this part of the memory it will break. You're inside a part of the code that verifies your string. Now from here you have to try to understand what the code is doing to find the instruction you want to alter.
Depending on how secure the application is, this will work. With a more secure application this most likely won't work. When your just starting reverse engineering I suggest you find some easy applications made for cracking and work your way to the more secure applications. A site where you can find many of these "crackmes" is crackmes.de. Also i can suggest lene151's tutorials here. Some of the best tutorials I've seen on reverse engineering.
Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 3 years ago.
Improve this question
Our motor pool wants to scan drivers’ licenses and have the data imported into our custom system. We're looking for something that will allow us to programmatically get the data from the scanner (including the picture) and let us insert it into our application. I was wondering if anyone has had experience with this type of system and could recommend one or tell us which ones to avoid. Our application is written in PowerBuilder and uses a DB2 database.
Try solutions by idScan.net (www.idScan.net)
There is SDK that will allow drivers license parsing for all states in the USA and Canadian provinces. You can also purchase hardware such as ID scanner E-seek m250 that reads both 2D barcode and magnetic stripes (software is included).
Good luck!
We support something similar in our records management software. Our application is designed to work with a wedge reader, since they are the easiest to get up and running (no special drivers needed). When a card is swiped, the reader sends keystrokes to the OS for each character that is encoded on the magnetic stripe, with a simulated Enter keypress between each track (an AAMVA-compliant license has 3 data tracks).
It's slightly annoying because it behaves exactly as if someone was typing out the data by hand, so there is no easy way to tell when you have all the data (you could just wait to get 3 lines of information, but then it's difficult to detect invalid cards, such as when someone tries to swipe a student ID card, which might have fewer than 3 tracks encoded; in this case, the application hangs forever waiting for the non-existent third track to be received). To deal with this, we use a "fail-fast" approach: each time we get an Enter keypress, we immediately process the current line, keeping a record of which track we are expecting at that point (1, 2, or 3). If the current track cannot be processed (for example, a different start character appears on the track that what is documented for an AAMVA format driver's license), we assume the user must have swiped something other than a driver's license.
I'm not sure if the reader we use supports reading image data or not. It can be programmed to return a subset of the data on the card, but we just use the factory default setting, which appears to return only the first three data tracks (and actually I believe image data is encoded in the 2D barcode found on some licenses, not on the magnetic stripe, but I could be wrong).
For more on the AAMVA track format that is used on driver's license magstripes, see Annex F in the current standard.
The basic approach we use is:
Display a modal dialog that has a hidden textbox, which is given focus. The dialog box simply tells the user to swipe the card through the reader.
The user swipes the card, and the reader starts sending keydown events to the hidden textbox.
The keydown event handler for the textbox watches for Enter keypresses. When one is detected, we grab the last line currently stored in the textbox, and pass it to a track parser that attempts to parse the track according to the AAMVA format.
If this "fail-fast" parsing step fails for the current track, we change the dialog's status message to a message telling the user the card could not be read. At this point, the textbox will still receive additional keydown events, but it's OK because subsequent tracks have a high enough chance of also failing that the user will still see the error message whenever the reader stops sending data.
If the parsing is successful, we increment a counter that tells the parser what track it should process next.
If the current track count is greater than 3, we know we've processed 3 tracks. At this point we parse the 3 tracks (which have already split most of the fields up but everything is still stored as strings at this point) into a more usable DriversLicense object, which does additional checks on the track data, and makes it more consumable from our application (converting the DOB field from a string into a real Date object, parsing out the subfields in the AAMVA Name field into first name, middle name, last name, name suffix, etc.). If this second parsing phase fails, we tell the user to reswipe the card. If it succeeds, we close the dialog and pass the DriversLicense object to our main application for further processing.
If your scanner is "twain compliant", You will then be able to manage it from your app through an ActiveX control you can buy on the net like this one. You'll be able to manage your basic scan parameters (quality, color, single/multiple pages can, output format, etc), start the scan from your app, save the result as a file and transfer this file wherever needed. We have been using it with VB code for the last 2 years. It works.
Maybe you want to use magnetic stripe reader, to get driver license info from the card. As I remember most of the Driver licenses just have the data in plain text on those stripes, so it is relatively stright forward programming-wise.
MagStripe readers are also cheap now days.
You can try something from this list: http://www.adams1.com/plugins.html
I have not used them myself, though.
I wrote a parser in C#, and while it's "ok" it's still far from perfect.
I can't seem to find it but a Wikipedia entry used to exist that has the patterns to look for (trust me, parsing this yourself is a pain without any help).
Be aware that different states have different laws for what you can and can't use government issued ID's for. Texas has one.
We use a dell card reader and it inputs it exactly as though it were being typed through a keyboard, followed by the enter key. This made programming /very/ easy because then you just send focus to the text box and wait for enter. The main keys which break it in to chunks is the carrot '^'. Break that and you'll have your basic chunks.
You can also use InfoScan SDK. You can find it on www.scan-monitor.com the system allows you to use any scanner and does not make you purchase a specific scanner.