Network prediction and norm issues - deep-learning

I am facing an issue that can be reduced to the toy problem of learning a map f(X) = exp(-0.1 * ||X||)X, where X is a matrix and ||X|| is the 2-norm of X.
I want to approximate such a map with a CNN and I have available a training dataset with N pairs of the form (X_i,f(X_i)). The dataset has matrices X_i with completely different norms. They can be 1, 10, 1e-5 and so on.
My question is: how would you normalize/manipulate the dataset to train the network and have it generalize well?

Related

Questions about convolution (in CNN)

I suddenly came up with a question about convolution and just wanted to be clear if I'm missing something. The question is whether if the two operations below are identical.
Case1)
Suppose we have a feature map C^2 x H x W. And, we have a K x K x C^2 Conv weight with stride S. (To be clear, C^2 is the channel dimension but just wanted to make it as a square number, K is the kernel size).
Case2)
Suppose we have a feature map 1 x CH x CW. And, we have a CK x CK x 1 Conv weight with stride CS.
So, basically Case2 is a pixel-upshuffled version of case1 (both feature-map and Conv weight.) As convolutions are simply element-wise multiplication, both operations seem identical to me.
# given a feature map and a conv_weight, namely f_map, conv_weight
#case1)
convLayer = Conv(conv_weight)
result = convLayer(f_map, stride=1)
#case2)
f_map = pixelshuffle(f_map, scale=C)
conv_weight = pixelshuffle(f_map, scale=C)
result = convLayer(f_map, stride=C)
But this means that, (for example) given a 256xHxW feature-map with a 3x3 Conv (as in many deep learning models), performing a convolution was simply doing a HUUUGE 48x48 Conv to a 1 x 16*H x 16*W Feature map.
But this doesn't meet my basic intuition of CNNs, stacking multiple of layers with the smallest 3x3 Conv, resulting in somewhat large receptive field, and each channel having different (possibly redundant) information.
You can, in a sense, think of "folding" spatial information into the channel dimension. This is the rationale behind ResNet's trade-off between spatial resolution and feature dimension. In the ResNet case whenever they sample x2 in space they increase feature space x2. However, since you have two spatial dimensions and you sample x2 in both you effectively reduce the "volume" of the feature map by x0.5.

PyTorch find keypoints: output nodes to be in a range and negative loss

I am beginner in deep learning.
I am using this dataset and I want my network to detect keypoints of a hand.
How can I make my output layer's nodes to be in range [-1, 1] (range of normalized 2D points)?
Another problem is when I train for more than 1 epoch the loss gets negative values
criterion: torch.nn.MultiLabelSoftMarginLoss() and optimizer: torch.optim.SGD()
Here u can find my repo
net = nnModel.Net()
net = net.to(device)
criterion = nn.MultiLabelSoftMarginLoss()
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=decay_rate)
You can use the Tanh activation function, since the image of the function lies in [-1, 1].
The problem of predicting key-points in an image is more of a regression problem than a classification problem (especially if you're making your model outputs + targets fall within a continuous interval). Therefore, I suggest you use the L2 Loss.
In fact, it could be a good exercise for you to determine which loss function that is appropriate for regression problems provides the lowest expected generalization error using cross-validation. There's several such functions available in PyTorch.
One way I can think of is to use torch.nn.Sigmoid which produces outputs in [0,1] range and scale outputs to [-1,1] using 2*x-1 transformation.

Determining the values of the filter matrices in a CNN

I am getting started with deep learning and have a basic question on CNN's.
I understand how gradients are adjusted using backpropagation according to a loss function.
But I thought the values of the convolving filter matrices (in CNN's) needs to be determined by us.
I'm using Keras and this is how (from a tutorial) the convolution layer was defined:
classifier = Sequential()
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
There are 32 filter matrices with dimensions 3x3 is used.
But, how are the values for these 32x3x3 matrices are determined?
It's not the gradients that are adjusted, the gradient calculated with the backpropagation algorithm is just the group of partial derivatives with respect to each weight in the network, and these components are in turn used to adjust the network weights in order to minimize the loss.
Take a look at this introductive guide.
The weights in the convolution layer in your example will be initialized to random values (according to a specific method), and then tweaked during training, using the gradient at each iteration to adjust each individual weight. Same goes for weights in a fully connected layer, or any other layer with weights.
EDIT: I'm adding some more details about the answer above.
Let's say you have a neural network with a single layer, which has some weights W. Now, during the forward pass, you calculate your output yHat for your network, compare it with your expected output y for your training samples, and compute some cost C (for example, using the quadratic cost function).
Now, you're interested in making the network more accurate, ie. you'd like to minimize C as much as possible. Imagine you want to find the minimum value for simple function like f(x)=x^2. You can start at some random point (as you did with your network), then compute the slope of the function at that point (ie, the derivative) and move down that direction, until you reach a minimum value (a local minimum at least).
With a neural network it's the same idea, with the difference that your inputs are fixed (the training samples), and you can see your cost function C as having n variables, where n is the number of weights in your network. To minimize C, you need the slope of the cost function C in each direction (ie. with respect to each variable, each weight w), and that vector of partial derivatives is the gradient.
Once you have the gradient, the part where you "move a bit following the slope" is the weights update part, where you update each network weight according to its partial derivative (in general, you subtract some learning rate multiplied by the partial derivative with respect to that weight).
A trained network is just a network whose weights have been adjusted over many iterations in such a way that the value of the cost function C over the training dataset is as small as possible.
This is the same for a convolutional layer too: you first initialize the weights at random (ie. you place yourself on a random position on the plot for the cost function C), then compute the gradients, then "move downhill", ie. you adjust each weight following the gradient in order to minimize C.
The only difference between a fully connected layer and a convolutional layer is how they calculate their outputs, and how the gradient is in turn computed, but the part where you update each weight with the gradient is the same for every weight in the network.
So, to answer your question, those filters in the convolutional kernels are initially random and are later adjusted with the backpropagation algorithm, as described above.
Hope this helps!
Sergio0694 states ,"The weights in the convolution layer in your example will be initialized to random values". So if they are random and say I want 10 filters. Every execution algorithm could find different filter. Also say I have Mnist data set. Numbers are formed of edges and curves. Is it guaranteed that there will be a edge filter or curve filter in 10?
I mean is first 10 filters most meaningful most distinctive filters we can find.
best

Why are my Keras Conv2D kernels 3-dimensional?

In a typical CNN, a conv layer will have Y filters of size NxM, and thus it has N x M x Y trainable parameters (not including bias).
Accordingly, in the following simple keras model, I expect the second conv layer to have 16 kernels of size (7x7), and thus kernel weights of size (7x7x16). Why then are its weights actually size (7x7x8x16)?
I understand the mechanics of what is happening: the Conv2D layers are actually doing a 3D convolution, treating the output maps of the previous layer as channels. It has 16 3D kernels of size(7x7x8). What I don't understand is:
why this is Keras's default behavior?
how do I get a "traditional" convolutional layer without dropping down into the low-level API (avoiding that is my reason for using Keras in the first place)?
_
from keras.models import Sequential
from keras.layers import InputLayer, Conv2D
model = Sequential([
InputLayer((101, 101, 1)),
Conv2D(8, (11, 11)),
Conv2D(16, (7, 7))
])
model.weights
Q1:and thus kernel weights of size (7x7x16). Why then are its weights actually size (7x7x8x16)?
No, the kernel weights is not the size(7x7x16).
from cs231n:
Example 2. Suppose an input volume had size [16x16x20]. Then using an example receptive field size of 3x3, every neuron in the Conv Layer would now have a total of 3*3*20 = 180 connections to the input volume. Notice that, again, the connectivity is local in space (e.g. 3x3), but full along the input depth (20).
Be careful the 'every'.
In your model, 7x7 is your single filter size, and it will connect to previous conv layer, so the parameters on a single filter is 7x7x8, and you have 16, so the total parameters is 7x7x8x16
Q2:why this is Keras's default behavior?
See Q1.
In the typical jargon, when someone refers to a conv layer with N kernels of size (x, y), it is implied that the kernels actually have size (x, y, z), where z is the depth of the input volume to that layer.
Imagine what happens when the input image to the network has R, G, and B channels: each of the initial kernels itself has 3 channels. Subsequent layers are the same, treating the input volume as a multi-channel image, where the channels are now maps of some other feature.
The motion of that 3D kernel as it "sweeps" across the input is only 2D, so it is still referred to as a 2D convolution, and the output of that convolution is a 2D feature map.
Edit:
I found a good quote about this in a recent paper, https://arxiv.org/pdf/1809.02601v1.pdf
"In a convolutional layer, the input feature map X is a W1 × H1 × D1 cube, with W1, H1 and D1 indicating its width, height and depth (also referred to as the number of channels), respectively. The output feature map, similarly, is a cube Z with W2 × H2 × D2 entries. The convolution Z = f(X) is parameterized by D2 convolutional kernels, each of which is a S × S × D1 cube."

Tune input features using backprop in keras

I am trying to implement discriminant condition codes in Keras as proposed in
Xue, Shaofei, et al., "Fast adaptation of deep neural network based
on discriminant codes for speech recognition."
The main idea is you encode each condition as an input parameter and let the network learn dependency between the condition and the feature-label mapping. On a new dataset instead of adapting the entire network you just tune these weights using backprop. For example say my network looks like this
X ---->|----|
|DNN |----> Y
Z --- >|----|
X: features Y: labels Z:condition codes
Now given a pretrained DNN, and X',Y' on a new dataset I am trying to estimate the Z' using backprop that will minimize prediction error on Y'. The math seems straightforward except I am not sure how to implement this in keras without having access to the backprop itself.
For instance, can I add an Input() layer with trainable=True with all other layers set to trainable= False. Can backprop in keras update more than just layer weights? Or is there a way to hack keras layers to do this?
Any suggestions welcome.
thanks
I figured out how to do this (exactly) in Keras by looking at fchollet's post here
Using the keras backend I was able to compute the gradient of my loss w.r.t to Z directly and used it to drive the update.
Code below:
import keras.backend as K
import numpy as np
model.summary() #Pretrained model
loss = K.categorical_crossentropy(Y, Y_out)
grads = K.gradients(loss, Z)
grads /= (K.sqrt(K.mean(K.square(grads)))+ 1e-5)
iterate = K.function([X,Z],[loss,grads])
step = 0.1
Z_adapt = Z_in.copy()
for i in range(100):
loss_val, grads_val = iterate([X_in,Z_adapt])
Z_adapt -= grads_val[0] * step
print "iter:",i,np.mean(loss_value)
print "Before:"
print model.evaluate([X_in, Z_in],Y_out)
print "After:"
print model.evaluate([X_in, Z_adapt],Y_out)
X,Y,Z are nodes in the model graph. Z_in is an initial value for Z'. I set it to an average value from the train set. Z_adapt is after 100 iterations of gradient descent and should give you a better result.
Assume that the size of Z is m x n. Then you can first define an input layer of size m * n x 1. The input will be an m * n x 1 vector of ones. You can define a dense layer containing m * n neurons and set trainable = True for it. The response of this layer will give you a flattened version of Z. Reshape it appropriately and give it as input to the rest of the network that can be appended ahead of this.
Keep in mind that if the size of Z is too large, then network may not be able to learn a dense layer of that many neurons. In that case, maybe you need to put additional constraints or look into convolutional layers. However, convolutional layers will put some constraints on Z.