Program is finished running dropped off - mips

When i run my code i got this
-- program is finished running (dropped off bottom) --
This is my code
.data
array: .space 12 # Reserve 12 bytes of memory for the array
.text
la $t0, array # Load the address of the array into $t0
li $v0, 4 # System call code for printing a string
la $a0, prompt # Load the address of the prompt string
syscall # Print the prompt
.data
prompt: .asciiz "Enter three integers: "
li $v0, 5 # System call code for reading an integer
syscall # Read the first integer
sw $v0, 0($t0) # Store the first integer in the first word of the array
li $v0, 5 # Read the second integer
syscall
sw $v0, 4($t0) # Store the second integer in the second word of the array
li $v0, 5 # Read the third integer
syscall
sw $v0, 8($t0) # Store the third integer in the third word of the array
lw $t1, 0($t0) # Load the first integer into $t1
lw $t2, 4($t0) # Load the second integer into $t2
lw $t3, 8($t0) # Load the third integer into $t3
add $t4, $t1, $t2 # Add the first two integers and store the result in $t4
add $t4, $t4, $t3 # Add the third integer and store the result in $t4
sw $t4, sum # Store the sum in memory
.data
sum: .word 0
li $t5, 3 # Load the value 3 into $t5
div $t4, $t5 # Divide the sum by 3 to get the average
mflo $t4 # Store the result of the division in $t4
sw $t4, avg # Store the average in memory
.data
avg: .word 0
li $t0, 3 # Load the value 3 into $t0
li $t1, 0 # Load the value 0 into $t1
loop:
lw $t2, 0($t0) # Load the next integer from the array into $t2
add $t1, $t1, $t2 # Add the current integer to the sum
addi $t0, $t0, 4 # Move to the next word in the array
bne $

Related

How to i fix my error when trying to calculate the sum using mips?

goodday, so currently my code prompts the user to enter a sum. my program then takes these stored values and outputs the sum of them. However, currently my code is not outputting the correct total and i am unsure where the problem lies.
i have attached my code below:
.text
main:
#Prompt
la $a0, prompt
li $v0, 4
syscall
# Get input string
li $v0, 8
la $a0, string_input
li $a1, 1024
move $t0, $a0
syscall
# initialise sum
lb $t2, ($t0) # Initialise the sum as the first value
addi $t2, $t2, -48 # Convert to decimal value
addu $t0, $t0, 1
b loop
loop:
lb $t3, ($t0) # Store the sign
lb $t1, 1($t0) # Store the value
addu $t0, $t0, 2 # increment the counter
beq $t1, 10, end_loop # If reached the end of the string
# Manipulate sign value to 1 if '+'
add $t3, $t3, 4
add $t2, $t2, $t1 # Add the value to the sum
b loop # re-iterate
end_loop:
# Printing the total sum
move $a0, $t2
li $v0, 1
syscall
# Exiting program
li $v0, 10
syscall
.data
string_input: .space 1024
prompt: .asciiz "Enter a sum:\n"
the current output should be 11 but this is what is outputted instead:
Enter a sum:
2+3+6
727

MIPS: Infinite loop with branches

So I have a program that takes an input from the user (integer above 0) and adds up all even numbers below it to achieve a return answer (Ex: input: 7; ans: 2 + 4 + 6 = 12).
The issue with this program is that it's meant to break out of the loop based on if my 'active even variable' ($t1) > the input. Although my program never seems to properly interpret the branch and loops indefinitely until $t1 overflows (I have checked the debugger and know that the program does run the branch line every time). Below is my code:
.data
N: .word 0
Result: .word 0
.text
.globl main
initialize:
li $v0, 5 #getting arg1 from user
syscall
la $t0, N
sw $v0, 0($t0)
li $t1, 2
li $t2, 0
main:
blt $t0, $t1, fin2
fori:
add $t2, $t2, $t1 #t2 += t1
add $t1, $t1, 2 #t1 += 2
slt $t5, $t1, $t0
bne $t5, $zero, fori
fin:
li $v0,1 #prints return value
move $a0, $t2
syscall
li $v0, 10
syscall
fin2:
li $v0,1 #prints return value
move $a0, $zero
syscall
li $v0, 10
syscall
So I don't know if you NEED to be using word storage and such, but really you were just over complicating it in doing so. All you needed was a simple loop which has a counter that increments by 2, checks if it is larger than the initial value, and then add that overall value to the result
.text
.globl main
initialize:
li $v0, 5 # Getting arg1 from user
syscall # System call
move $t0, $v0 # Store the input value in $t0
li $t1, 0 # Initializing the result register
li $t2, 0 # Initializing the addition/counter register
main:
loop:
add $t2, $t2, 2 # Increase the value to be added by 2 (next even value)
bge $t2, $t0, fin # Check if the increment is larger than or equal to the initial input, if so break to finish
add $t1, $t1, $t2 # Increment the result by adding the even value
j loop # jump bak to the top of the loop
fin:
li $v0,1 # let the system know an integer is going to be printed
move $a0, $t1 # Load the result into the $a0 register (the register that prints values)
syscall # System Call
li $v0, 10 # Let the system know the program is going to exit
syscall # System Call
So as you can see $t2 increments by 2 each time. After each increment it is compared to the input value. If the input ($t0) than $t2 then add the value of $t2 to the result ($t1). This way there is an increment counter which is also used to add the necessary even value to the result.
Edit:
Not sure if this is entirely what you meant but I just tossed in some loads and saves, using the s registers as those are the register that are supposed to be used when saving values.
.data
N: .word 0
Result: .word 0
.text
.globl main
initialize:
li $v0, 5 # Getting arg1 from user
syscall # System Call
la $s0, N # Load the address of N into $s0
sw $v0, 0($s0) # Store the input value in 0 index of N
li $t2, 0 # Initializing the addition/counter register
la $s1, Result # Load the address of Result into $s1
main:
sw $t2, 0($s1) # Setting the 0 index of Result to 0
loop:
add $t2, $t2, 2 # Increase the value to be added by 2 (next even value)
lw $t4, 0($s0) # Loading the input value into the $t4 register
bge $t2, $t4, fin # Check if the increment is larger than or equal to the initial input, if so break to finish
lw $t4, 0($s1) # Loading the current result into the $t4 register
add $t4, $t4, $t2 # Increment the result by adding the even value
sw $t4, 0($s1) # Saving the new current result into the $t4 register
j loop # jump bak to the top of the loop
fin:
li $v0,1 # let the system know an integer is going to be printed
lw $a0, 0($s1) # Load the result into the $a0 register (the register that prints values)
syscall # System Call
li $v0, 10 # Let the system know the program is going to exit
syscall # System Call

How do you properly read an integer input in MIPS?

The following program 1. Prints out the array 2. Given a lower and upper bound input by user, determines the min and min index within that range
It runs the print array function.
However, I tried tracing the registers in QTSPIM, it does not correctly assign the lower bound and upper bound to $a0 and $a1 respectively. In fact, $v0 does not seem to even scan anything. To move the scanned input from $v0 to $t0, tried using "move $t0, $v0" instead. The problem still occurs.
# Ask the user for two indices
li $v0, 5 # System call code for read_int
syscall
add $t0, $v0, $zero # store input in $t0
sll $t0, $t0, 2 # relative address position (lower bound)
add $a0, $t9, $t0 # array pointer (lower bound)
li $v0, 5 # System call code for read_int
syscall
add $t0, $v0, $zero # store input in $t0
sll $t0, $t0, 2 # relative address position (upper bound)
add $a1, $t9, $t0 # array pointer (upper bound)
The full code is below. Can anyone enlighten me if there's anything wrong?
# arrayFunction.asm
.data
array: .word 8, 2, 1, 6, 9, 7, 3, 5, 0, 4
newl: .asciiz "\n"
.text
main:
# Print the original content of array
# setup the parameter(s)
la $a0, array # base address of array
add $t9, $a0, $zero # store base address
la $a1, 10 # number of elements in array
# call the printArray function
jal printArray # call function
# Ask the user for two indices
li $v0, 5 # System call code for read_int
syscall
add $t0, $v0, $zero # store input in $t0
sll $t0, $t0, 2 # relative address position (lower bound)
add $a0, $t9, $t0 # array pointer (lower bound)
li $v0, 5 # System call code for read_int
syscall
add $t0, $v0, $zero # store input in $t0
sll $t0, $t0, 2 # relative address position (upper bound)
add $a1, $t9, $t0 # array pointer (upper bound)
# Call the findMin function
# setup the parameter(s)
# call the function
jal findMin # call function
# Print the min item
# place the min item in $t3 for printing
addi $t3, $t1, 0
# Print an integer followed by a newline
li $v0, 1 # system call code for print_int
addi $a0, $t3, 0 # print $t3
syscall # make system call
li $v0, 4 # system call code for print_string
la $a0, newl
syscall # print newline
#Calculate and print the index of min item
la $a0, array
add $t3, $v0, $a0
srl $t3, $t3, 2
# Place the min index in $t3 for printing
# Print the min index
# Print an integer followed by a newline
li $v0, 1 # system call code for print_int
addi $a0, $t3, 0 # print $t3
syscall # make system call
li $v0, 4 # system call code for print_string
la $a0, newl #
syscall # print newline
# End of main, make a syscall to "exit"
li $v0, 10 # system call code for exit
syscall # terminate program
#######################################################################
### Function printArray ###
#Input: Array Address in $a0, Number of elements in $a1
#Output: None
#Purpose: Print array elements
#Registers used: $t0, $t1, $t2, $t3
#Assumption: Array element is word size (4-byte)
printArray:
addi $t1, $a0, 0 #$t1 is the pointer to the item
sll $t2, $a1, 2 #$t2 is the offset beyond the last item
add $t2, $a0, $t2 #$t2 is pointing beyond the last item
l1:
beq $t1, $t2, e1
lw $t3, 0($t1) #$t3 is the current item
li $v0, 1 # system call code for print_int
addi $a0, $t3, 0 # integer to print
syscall # print it
addi $t1, $t1, 4
j l1 # Another iteration
e1:
li $v0, 4 # system call code for print_string
la $a0, newl #
syscall # print newline
jr $ra # return from this function
#######################################################################
### Student Function findMin ###
#Input: Lower Array Pointer in $a0, Higher Array Pointer in $a1
#Output: $v0 contains the address of min item
#Purpose: Find and return the minimum item
# between $a0 and $a1 (inclusive)
#Registers used: $t0 (counter), $t1 (max add), $t2 (min), $v0 (min pos), $t3 (current item)
#Assumption: Array element is word size (4-byte), $a0 <= $a1
findMin:
lw, $t2, 0($a0) # initialise min (value) to the lower bound
addi $t0, $a0, 0 # initialise $t0 (current pointer) to lower bound
addi $t1, $a1, 0 # initialise $t1 (add of end of array) to upper bound
Loop: slt $t4, $t1, $t0
bne $t4, $zero, End # branch to end if upper < lower
lw, $t3, 0($a0) # store the content of the lower array pointer
slt $t4, $t3, $t2 # if current ($t3) < min ($t2), store 1 in $t4
beq $t4, $zero, LoopEnd # if it is 0, go to LoopEnd
addi $t2, $t3, 0 # store content ($t3) as minimum ($t2)
addi $v0, $t0, 0 # store the address of min
LoopEnd: addi, $t0, 4 # increments current pointer lower bound
j Loop # Jump to loop
End:
jr $ra # return from this function
You read in the integers properly. The problems are elsewhere
In findMin function you use lw, $t3, 0($a0), but you should use it with $t0 instead of $a0.
After you return from this function you accidentally save $t1 as min value rather then $t2 which actually holds it.
Also you do not save $v0 which holds the pointer for the min value, so you use some garbage data later on, not the intended one.
When you calculate the index of the min from the pointer you use add, but it should be sub.
Also as it was mentioned in the comments at LoopEnd the add is syntactically wrong. It should be addi $t0, $t0, 4. But this maybe just some copy paste error.
Here is the fixed code. Changed lined marked with ERROR.
# arrayFunction.asm
.data
array: .word 8, 2, 1, 6, 9, 7, 3, 5, 0, 4
newl: .asciiz "\n"
.text
main:
# Print the original content of array
# setup the parameter(s)
la $a0, array # base address of array
add $t9, $a0, $zero # store base address
la $a1, 10 # number of elements in array
# call the printArray function
jal printArray # call function
# Ask the user for two indices
li $v0, 5 # System call code for read_int
syscall
add $t0, $v0, $zero # store input in $t0
sll $t0, $t0, 2 # relative address position (lower bound)
add $a0, $t9, $t0 # array pointer (lower bound)
li $v0, 5 # System call code for read_int
syscall
add $t0, $v0, $zero # store input in $t0
sll $t0, $t0, 2 # relative address position (upper bound)
add $a1, $t9, $t0 # array pointer (upper bound)
# Call the findMin function
# setup the parameter(s)
# call the function
jal findMin # call function
# Print the min item
# place the min item in $t3 for printing
addi $t3, $t2, 0 # ERROR: min is in $t2 not $t1
addi $t4, $v0, 0 # ERROR: not saving the pointer to the min element
# Print an integer followed by a newline
li $v0, 1 # system call code for print_int
addi $a0, $t3, 0 # print $t3
syscall # make system call
li $v0, 4 # system call code for print_string
la $a0, newl
syscall # print newline
#Calculate and print the index of min item
la $a0, array
sub $t3, $t4, $a0 # ERROR: sub should used not add
srl $t3, $t3, 2
# Place the min index in $t3 for printing
# Print the min index
# Print an integer followed by a newline
li $v0, 1 # system call code for print_int
addi $a0, $t3, 0 # print $t3
syscall # make system call
li $v0, 4 # system call code for print_string
la $a0, newl #
syscall # print newline
# End of main, make a syscall to "exit"
li $v0, 10 # system call code for exit
syscall # terminate program
#######################################################################
### Function printArray ###
#Input: Array Address in $a0, Number of elements in $a1
#Output: None
#Purpose: Print array elements
#Registers used: $t0, $t1, $t2, $t3
#Assumption: Array element is word size (4-byte)
printArray:
addi $t1, $a0, 0 #$t1 is the pointer to the item
sll $t2, $a1, 2 #$t2 is the offset beyond the last item
add $t2, $a0, $t2 #$t2 is pointing beyond the last item
l1:
beq $t1, $t2, e1
lw $t3, 0($t1) #$t3 is the current item
li $v0, 1 # system call code for print_int
addi $a0, $t3, 0 # integer to print
syscall # print it
addi $t1, $t1, 4
j l1 # Another iteration
e1:
li $v0, 4 # system call code for print_string
la $a0, newl #
syscall # print newline
jr $ra # return from this function
#######################################################################
### Student Function findMin ###
#Input: Lower Array Pointer in $a0, Higher Array Pointer in $a1
#Output: $v0 contains the address of min item
#Purpose: Find and return the minimum item
# between $a0 and $a1 (inclusive)
#Registers used: $t0 (counter), $t1 (max add), $t2 (min), $v0 (min pos), $t3 (current item)
#Assumption: Array element is word size (4-byte), $a0 <= $a1
findMin:
lw, $t2, 0($a0) # initialise min (value) to the lower bound
addi $t0, $a0, 0 # initialise $t0 (current pointer) to lower bound
addi $t1, $a1, 0 # initialise $t1 (add of end of array) to upper bound
Loop:
slt $t4, $t1, $t0
bne $t4, $zero, End # branch to end if upper < lower
lw, $t3, 0($t0) # store the content of the lower array pointer, ERROR: t0 should be used not a0
slt $t4, $t3, $t2 # if current ($t3) < min ($t2), store 1 in $t4
beq $t4, $zero, LoopEnd # if it is 0, go to LoopEnd
addi $t2, $t3, 0 # store content ($t3) as minimum ($t2)
addi $v0, $t0, 0 # store the address of min
LoopEnd:
addi $t0, $t0, 4 # increments current pointer lower bound
j Loop # Jump to loop
End:
jr $ra # return from this function

A MIPS palindrome

The current code that I have looks as such. It can successfully read if a string is a palindrome when punctuation is not entered.
.data
buffer: .space 80
input: .asciiz "Enter a string: "
output: .asciiz "Your string: "
paly: .asciiz "This is a palindrome "
notp: .asciiz "This is not a palindrome"
.text
main:
li $v0, 4 # system call code for print_str
la $a0, input # address of string to print
syscall # print the input
li $v0, 8 # code for syscall read_string
la $a0, buffer # tell syscall where the buffer is
li $a1, 80 # tell syscall how big the buffer is
syscall
la $a0, buffer # move buffer into a0
li $v0, 4 # print buffer
syscall
la $t1, buffer # begining of the string
la $t2, buffer # end of the string
li $t0, 0
loop:
lb $t3,($t2) # load the byte of the end of the string
beqz $t3,endl # if its equal to 0 then branch out of the loop
addu $t2, $t2,1 # if in loop the increment to next character
jal loop # repeat the loop
upper:
addi $t4,$t4,32
j lowered
lowered:
addi $t0,$t0,1
sb $t4, 0($a0)
addi $a0,$a0,1
j loop
endl:
subu $t2, $t2, 2 # subtracting 2 to move back from \0 and \n
check:
#lb $t4, 0($a0)
#beqz $t4, after
#beq $t4, 10, after
#slti $t2, $t4, 91
#li $t3, 1
#beq $t2, $t3, upper
bge $t1, $t2, palindrome # if both sides are equal then its a palindrome
# call palindrome
lb $t3, ($t1) # load the byte into register t3
lb $t4, ($t2) # load the end byte into register t4
bne $t3, $t4, notpaly # if the two register bytes are not equal its it not a palindrome
addu $t1, $t1, 1 # increment the beginning of the string to next char
subu $t2, $t2, 1 # decrement end of string to next char to compare
jal check # repeat the loop
palindrome:
la $a0, paly # calling paly from data
li $v0, 4 # call for reading string
syscall
jal exit # jump to end
notpaly:
la $a0,notp # calling notp from data
li $v0, 4 # call for reading string
syscall
jal exit # jump to end
after:
li $v0, 4
la $a0, output
syscall
la $a0, buffer
li $v0, 4
syscall
exit:
li $v0 ,10 # call to end program
syscall # call os
Now I know I need to implement code such as to make uppercase lowercase, and to remove punctuation.
With my already stored bits in check: I have some commented code, and this would be to to test if a character is uppercase, then jump to the function and lower it by adding 32. But it does not compile correctly and i am assuming this is because I am not storing the bits correctly.
#lb $t4, 0($a0)
#beqz $t4, after
#beq $t4, 10, after
#slti $t2, $t4, 91
#li $t3, 1
#beq $t2, $t3, upper

MIPS Store keyboard input (ints) to array

I am trying to take 4 numbers from the keyboard and store it to an array. I have come up with the following code however when I try and print the first number in the array it prints 0. Why is it not printing the first value in the array?
main:
li $v0, 5 # read integer
syscall
add $s0, $v0, $zero #store input1 to s0
li $v0, 5 # read integer
syscall
add $s1, $v0, $zero #store input2 to s0
li $v0, 5 # read integer
syscall
add $s2, $v0, $zero #store input3 to s0
li $v0, 5 # read integer
syscall
add $s3, $v0, $zero #store input4 to s0
.data
list: $s0, $s1, $s2, $s3 #set array from keyboard values
.text
#get the array into a register
la $t3, list # put address of list into $t3
lw $t4, 0($t3) # get the value from the array cell
li $v0, 1 # print integer
move $a0, $t4 # what to print is stored at $s1
syscall # make system call
exit:
li $v0, 10 # exit system call
syscall
Idea taken from:
http://www.cs.pitt.edu/~xujie/cs447/AccessingArray.htm
But they are using hard-coded ints instead of values saved to registers from keyboard.
Thanks for the help.
This:
.data
list: $s0, $s1, $s2, $s3 #set array from keyboard values
.text
does not work this way. You need sw to store the values of registers to memory.
So, at the start of the program, reserve some space to store the values:
.data
list: .space 16
.text
Then, after you read the values, store them with sw:
sw $s0, list
sw $s1, list + 4
sw $s2, list + 8
sw $s3, list + 12