Related
I'm new in AI, and i want to get in the field, i have spent some time finishing a program to train an agent for a simple customized environment, but when i perform the training in colab for 10000 episodes, it still can not get well performance. I guess whether there is something wrong with the customized env or there is something wrong with the training process.
Env: a helicopter tries to get throw the continous flow of birds (max num: 10), the birds moves from the right to the left, and there is fuel randomly. If the helicopter is still alive, i.e., it has not collided with a bird and still has fuel (initialized by 1000, when it collides with the fuel icon (max num: 2), fuel_left will be reset to 1000), its rewards plus 1.
the environment is shown in the figure:
after 10000 episode in ddpg/dqn, the agent still can not play more than 15 seconds, could you point out where the problem is?
Action space(1 dim): 0, 1, 2, 3, 4 -> helicopter moves up, down, left, right and keep static.
State space(28 dim): (x,y) for 10 birds, 2 fuel, and 1 helicopter. Besides, there is fuel left and rewards obtained.
Rewards: If the helicopter is alive, rewards plus 1.
the env settings code is as follwos (custom.py):
import numpy as np
import cv2
import matplotlib.pyplot as plt
import random
import math
import time
from gym import Env, spaces
import time
font = cv2.FONT_HERSHEY_COMPLEX_SMALL
class ChopperScape(Env):
def __init__(self):
super(ChopperScape,self).__init__()
self.maxbirdnum = 10
self.maxfuelnum = 2
self.observation_shape = (28,)
self.canvas_shape = (600,800,3)
self.action_space = spaces.Discrete(5,)
self.last_action = 0
self.obs = np.zeros(self.observation_shape)
self.canvas = np.ones(self.canvas_shape) * 1
self.elements = []
self.maxfuel = 1000
self.y_min = int (self.canvas_shape[0] * 0.1)
self.x_min = 0
self.y_max = int (self.canvas_shape[0] * 0.9)
self.x_max = self.canvas_shape[1]
def draw_elements_on_canvas(self):
self.canvas = np.ones(self.canvas_shape) * 1
for elem in self.elements:
elem_shape = elem.icon.shape
x,y = elem.x, elem.y
self.canvas[y : y + elem_shape[1], x:x + elem_shape[0]] = elem.icon
text = 'Fuel Left: {} | Rewards: {}'.format(self.fuel_left, self.ep_return)
self.canvas = cv2.putText(self.canvas, text, (10,20), font, 0.8, (0,0,0), 1, cv2.LINE_AA)
def reset(self):
self.fuel_left = self.maxfuel
self.ep_return = 0
self.obs = np.zeros(self.observation_shape)
self.obs[26] = self.maxfuel
self.bird_count = 0
self.fuel_count = 0
x = random.randrange(int(self.canvas_shape[0] * 0.05), int(self.canvas_shape[0] * 0.90))
y = random.randrange(int(self.canvas_shape[1] * 0.05), int(self.canvas_shape[1] * 0.90))
self.chopper = Chopper("chopper", self.x_max, self.x_min, self.y_max, self.y_min)
self.chopper.set_position(x,y)
self.obs[24] = x
self.obs[25] = y
self.elements = [self.chopper]
self.canvas = np.ones(self.canvas_shape) * 1
self.draw_elements_on_canvas()
return self.obs
def get_action_meanings(self):
return {0: "Right", 1: "Left", 2: "Down", 3: "Up", 4: "Do Nothing"}
def has_collided(self, elem1, elem2):
x_col = False
y_col = False
elem1_x, elem1_y = elem1.get_position()
elem2_x, elem2_y = elem2.get_position()
if 2 * abs(elem1_x - elem2_x) <= (elem1.icon_w + elem2.icon_w):
x_col = True
if 2 * abs(elem1_y - elem2_y) <= (elem1.icon_h + elem2.icon_h):
y_col = True
if x_col and y_col:
return True
return False
def step(self, action):
done = False
reward = 1
assert self.action_space.contains(action), "invalid action"
if action == 4:
self.chopper.move(0,5)
elif action == 1:
self.chopper.move(0,-5)
elif action == 2:
self.chopper.move(5,0)
elif action == 0:
self.chopper.move(-5,0)
elif action == 3:
self.chopper.move(0,0)
if random.random() < 0.1 and self.bird_count<self.maxbirdnum:
spawned_bird = Bird("bird_{}".format(self.bird_count), self.x_max, self.x_min, self.y_max, self.y_min)
self.bird_count += 1
bird_y = random.randrange(self.y_min, self.y_max)
spawned_bird.set_position(self.x_max, bird_y)
self.elements.append(spawned_bird)
if random.random() < 0.05 and self.fuel_count<self.maxfuelnum:
spawned_fuel = Fuel("fuel_{}".format(self.bird_count), self.x_max, self.x_min, self.y_max, self.y_min)
self.fuel_count += 1
fuel_x = random.randrange(self.x_min, self.x_max)
fuel_y = self.y_max
spawned_fuel.set_position(fuel_x, fuel_y)
self.elements.append(spawned_fuel)
for elem in self.elements:
if isinstance(elem, Bird):
if elem.get_position()[0] <= self.x_min:
self.elements.remove(elem)
self.bird_count -= 1
else:
elem.move(-5,0)
if self.has_collided(self.chopper, elem):
done = True
reward = -100000.0*(1.0/self.ep_return+1)
if isinstance(elem, Fuel):
flag1 = False
flag2 = False
if self.has_collided(self.chopper, elem):
self.fuel_left = self.maxfuel
flag1 = True
reward += 2
# time.sleep(0.5)
if elem.get_position()[1] <= self.y_min:
flag2 = True
self.fuel_count -= 1
else:
elem.move(0, -5)
if flag1 == True or flag2 == True:
self.elements.remove(elem)
self.fuel_left -= 1
if self.fuel_left == 0:
done = True
self.draw_elements_on_canvas()
self.ep_return += 1
birdnum = 0
fuelnum = 0
x_, y_ = self.chopper.get_position()
dis = 0.0
for elem in self.elements:
x,y = elem.get_position()
if isinstance(elem,Bird):
self.obs[2*birdnum] = x
self.obs[2*birdnum+1] = y
birdnum += 1
dis += math.hypot(x_-x,y_-y)
if isinstance(elem,Fuel):
base = self.maxbirdnum*2
self.obs[base+2*fuelnum] = x
self.obs[base+2*fuelnum+1] = y
fuelnum += 1
self.obs[24] = x_
self.obs[25] = y_
self.obs[26] = self.fuel_left
self.obs[27] = self.ep_return
if x_ == self.x_min or x_ == self.x_max or y_ == self.y_max or y_ == self.y_min:
reward -= random.random()
for i in range(26):
if i%2 == 0:
self.obs[i]/=800.0
else:
self.obs[i]/=600.0
self.obs[26]/=1000.0
self.obs[27]/=100.0
# print('reward:',reward)
# if done == True:
# time.sleep(1)
return self.obs, reward, done, {}
def render(self, mode = "human"):
assert mode in ["human", "rgb_array"], "Invalid mode, must be either \"human\" or \"rgb_array\""
if mode == "human":
cv2.imshow("Game", self.canvas)
cv2.waitKey(10)
elif mode == "rgb_array":
return self.canvas
def close(self):
cv2.destroyAllWindows()
class Point(object):
def __init__(self, name, x_max, x_min, y_max, y_min):
self.x = 0
self.y = 0
self.x_min = x_min
self.x_max = x_max
self.y_min = y_min
self.y_max = y_max
self.name = name
def set_position(self, x, y):
self.x = self.clamp(x, self.x_min, self.x_max - self.icon_w)
self.y = self.clamp(y, self.y_min, self.y_max - self.icon_h)
def get_position(self):
return (self.x, self.y)
def move(self, del_x, del_y):
self.x += del_x
self.y += del_y
self.x = self.clamp(self.x, self.x_min, self.x_max - self.icon_w)
self.y = self.clamp(self.y, self.y_min, self.y_max - self.icon_h)
def clamp(self, n, minn, maxn):
return max(min(maxn, n), minn)
class Chopper(Point):
def __init__(self, name, x_max, x_min, y_max, y_min):
super(Chopper, self).__init__(name, x_max, x_min, y_max, y_min)
self.icon = cv2.imread("chopper1.jpg") / 255.0
self.icon_w = 64
self.icon_h = 64
self.icon = cv2.resize(self.icon, (self.icon_h, self.icon_w))
class Bird(Point):
def __init__(self, name, x_max, x_min, y_max, y_min):
super(Bird, self).__init__(name, x_max, x_min, y_max, y_min)
self.icon = cv2.imread("bird1.jpg") / 255.0
self.icon_w = 32
self.icon_h = 32
self.icon = cv2.resize(self.icon, (self.icon_h, self.icon_w))
class Fuel(Point):
def __init__(self, name, x_max, x_min, y_max, y_min):
super(Fuel, self).__init__(name, x_max, x_min, y_max, y_min)
self.icon = cv2.imread("fuel1.jpg") / 255.0
self.icon_w = 32
self.icon_h = 32
self.icon = cv2.resize(self.icon, (self.icon_h, self.icon_w))
if __name__ == '__main__':
from IPython import display
env = ChopperScape()
obs = env.reset()
while True:
# random agent
action = random.randrange(-1,1)
obs, reward, done, info = env.step(action)
# Render the game
env.render()
if done == True:
break
env.close()
the ddpg algorithm to train the agent is as follows (ddpg.py):
from custom import ChopperScape
import random
import collections
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
#θΆ
εζ°
lr_mu = 0.005
lr_q = 0.01
gamma = 0.99
batch_size = 32
buffer_limit = 50000
tau = 0.005 # for target network soft update
class ReplayBuffer():
def __init__(self):
self.buffer = collections.deque(maxlen=buffer_limit)
def put(self, transition):
self.buffer.append(transition)
def sample(self, n):
mini_batch = random.sample(self.buffer, n)
s_lst, a_lst, r_lst, s_prime_lst, done_mask_lst = [], [], [], [], []
for transition in mini_batch:
s, a, r, s_prime, done = transition
s_lst.append(s)
a_lst.append([a])
r_lst.append(r)
s_prime_lst.append(s_prime)
done_mask = 0.0 if done else 1.0
done_mask_lst.append(done_mask)
return torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst, dtype=torch.float), \
torch.tensor(r_lst, dtype=torch.float), torch.tensor(s_prime_lst, dtype=torch.float), \
torch.tensor(done_mask_lst, dtype=torch.float)
def size(self):
return len(self.buffer)
class MuNet(nn.Module):
def __init__(self):
super(MuNet, self).__init__()
self.fc1 = nn.Linear(28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc_mu = nn.Linear(64, 1)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
mu = torch.tanh(self.fc_mu(x))
return mu
class QNet(nn.Module):
def __init__(self):
super(QNet, self).__init__()
self.fc_s = nn.Linear(28, 64)
self.fc_a = nn.Linear(1,64)
self.fc_q = nn.Linear(128, 32)
self.fc_out = nn.Linear(32,1)
def forward(self, x, a):
h1 = F.relu(self.fc_s(x))
h2 = F.relu(self.fc_a(a))
cat = torch.cat([h1,h2], dim=1)
q = F.relu(self.fc_q(cat))
q = self.fc_out(q)
return q
class OrnsteinUhlenbeckNoise:
def __init__(self, mu):
self.theta, self.dt, self.sigma = 0.1, 0.01, 0.1
self.mu = mu
self.x_prev = np.zeros_like(self.mu)
def __call__(self):
x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + \
self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape)
self.x_prev = x
return x
def train(mu, mu_target, q, q_target, memory, q_optimizer, mu_optimizer):
s,a,r,s_prime,done_mask = memory.sample(batch_size)
core = q_target(s_prime, mu_target(s_prime)) * done_mask
target = r + gamma * core
q_loss = F.smooth_l1_loss(q(s,a), target.detach())
q_optimizer.zero_grad()
q_loss.backward()
q_optimizer.step()
mu_loss = -q(s,mu(s)).mean() # That's all for the policy loss.
mu_optimizer.zero_grad()
mu_loss.backward()
mu_optimizer.step()
def soft_update(net, net_target):
for param_target, param in zip(net_target.parameters(), net.parameters()):
param_target.data.copy_(param_target.data * (1.0 - tau) + param.data * tau)
def main():
env = ChopperScape()
memory = ReplayBuffer()
q, q_target = QNet(), QNet()
q_target.load_state_dict(q.state_dict())
mu, mu_target = MuNet(), MuNet()
mu_target.load_state_dict(mu.state_dict())
score = 0.0
print_interval = 20
mu_optimizer = optim.Adam(mu.parameters(), lr=lr_mu)
q_optimizer = optim.Adam(q.parameters(), lr=lr_q)
ou_noise = OrnsteinUhlenbeckNoise(mu=np.zeros(1))
for n_epi in range(10000):
s = env.reset()
done = False
while not done:
a = mu(torch.from_numpy(s).float())
a = a.item() + ou_noise()[0]
print('action:',a)
s_prime, r, done, info = env.step(a)
env.render()
memory.put((s,a,r/100.0,s_prime,done))
score += r
s = s_prime
if memory.size()>20000:
for _ in range(10):
train(mu, mu_target, q, q_target, memory, q_optimizer, mu_optimizer)
soft_update(mu, mu_target)
soft_update(q, q_target)
if n_epi%print_interval==0 and n_epi!=0:
print("# of episode :{}, avg score : {:.1f}".format(n_epi, score/print_interval))
score = 0.0
env.close()
if __name__ == '__main__':
main()
and the dqn algorithm is as follows(dqn.py):
import gym
import collections
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from custom import ChopperScape
#Hyperparameters
learning_rate = 0.0005
gamma = 0.98
buffer_limit = 50000
batch_size = 32
class ReplayBuffer():
def __init__(self):
self.buffer = collections.deque(maxlen=buffer_limit)
def put(self, transition):
self.buffer.append(transition)
def sample(self, n):
mini_batch = random.sample(self.buffer, n)
s_lst, a_lst, r_lst, s_prime_lst, done_mask_lst = [], [], [], [], []
for transition in mini_batch:
s, a, r, s_prime, done_mask = transition
s_lst.append(s)
a_lst.append([a])
r_lst.append([r])
s_prime_lst.append(s_prime)
done_mask_lst.append([done_mask])
return torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst), \
torch.tensor(r_lst), torch.tensor(s_prime_lst, dtype=torch.float), \
torch.tensor(done_mask_lst)
def size(self):
return len(self.buffer)
class Qnet(nn.Module):
def __init__(self):
super(Qnet, self).__init__()
self.fc1 = nn.Linear(28, 128)
self.fc2 = nn.Linear(128, 128)
self.fc3 = nn.Linear(128, 5)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def sample_action(self, obs, epsilon):
out = self.forward(obs)
# coin = random.random()
# if coin < epsilon:
# return random.randint(0,1)
# else :
# return out.argmax().item()
return out.argmax().item()
def train(q, q_target, memory, optimizer):
for _ in range(10):
s,a,r,s_prime,done_mask = memory.sample(batch_size)
q_out = q(s)
q_a = q_out.gather(1,a)
max_q_prime = q_target(s_prime).max(1)[0].unsqueeze(1)
target = r + gamma * max_q_prime * done_mask
loss = F.smooth_l1_loss(q_a, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
def main():
env = ChopperScape()
q = torch.load('10000_dqn_3.pt')
q_target = torch.load('10000_dqn_3_qtarget.pt')
# q_target.load_state_dict(q.state_dict())
memory = ReplayBuffer()
print_interval = 20
score = 0.0
optimizer = optim.Adam(q.parameters(), lr=learning_rate)
for n_epi in range(10000):
epsilon = max(0.01, 0.08 - 0.01*(n_epi/200)) #Linear annealing from 8% to 1%
s = env.reset()
done = False
while not done:
a = q.sample_action(torch.from_numpy(s).float(), epsilon)
s_prime, r, done, info = env.step(a)
env.render()
done_mask = 0.0 if done else 1.0
memory.put((s,a,r,s_prime, done_mask))
s = s_prime
if done:
break
score += r
if memory.size()>20000:
train(q, q_target, memory, optimizer)
if n_epi%print_interval==0 and n_epi!=0:
q_target.load_state_dict(q.state_dict())
print("n_episode :{}, score : {:.1f}, n_buffer : {}, eps : {:.1f}%".format(n_epi, score/print_interval, memory.size(), epsilon*100))
score = 0.0
env.close()
def test():
env = ChopperScape()
q = torch.load('10000_dqn_q.pt')
done = False
s = env.reset()
while not done:
a = q.sample_action(torch.from_numpy(s).float(), 1)
s_prime, r, done, info = env.step(a)
env.render()
s = s_prime
if done:
break
if __name__ == '__main__':
main()
when perform dqn, please annotate the action convert part in custom.py/class ChoperScape/step
after 10000 episode in ddpg/dqn, the agent still can not play more than 15 seconds, could you point out where the problem is?
I've been playing around a bit with Pytorch and have created a convolutional network with a total of 3 layers. I created a loss function that takes the results from the first layer and tries to minimize the norm.
So that view2 displays the data after the first layer in a matrix.
During learning, the error did not change at all, and the city was equal to 1 the whole time.
I know that this code doesn't make sense, but I am very intersting to her very this code is not working.
data = sio.loadmat('ORL_32x32.mat')
x, y = data['fea'], data['gnd']
x, y = data['fea'].reshape((-1, 1, 32, 32)), data['gnd']
y = np.squeeze(y - 1) # y in [0, 1, ..., K-1]
class ConvAutoencoder(nn.Module):
def __init__(self):
super(ConvAutoencoder, self).__init__()
## encoder layers ##
# conv layer (depth from 3 --> 16), 3x3 kernels
self.conv1 = nn.Conv2d(1, 3, 3)
self.conv2 = nn.Conv2d(3 ,3, 3)
self.conv3 = nn.Conv2d(3, 3, 3)
self.conv4 = nn.Conv2d(3, 3, 3)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
return x
def test1(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
return x
def test2(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
return x
def my_loss(novi2):
return torch.tensor(LA.norm(novi2)).to(device)
model = ConvAutoencoder().to(device)
epochs = 950;
lossList = []
view2 = np.zeros((576,400))
view3 = np.zeros((576,400))
losses = torch.tensor(0.).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
if not isinstance(x, torch.Tensor):
x = torch.tensor(x, dtype=torch.float32, device=device)
x = x.to(device)
if isinstance(y, torch.Tensor):
y = y.to('cuda').numpy()
K = len(np.unique(y))
for epoch in range(epochs):
view2 = np.zeros((576,400))
view3 = np.zeros((576,400))
output = model.test2(x.to(device)).cpu().detach().numpy()
output1 = model.test1(x.to(device)).cpu().detach().numpy()
for i in range(numclass):
lovro = output[i]
lovro =lovro[[0]]
lovro = lovro.squeeze(axis = 0)
lovro = lovro.flatten()
for j in range(576):
view2[j][i] = lovro[j]
for i in range(numclass):
lovro = output[i]
loss = my_loss(view2)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Epoch %02d' %
(epoch))
The way you implemented your loss does not really look "differentiable". I am putting it in quotation marks because what you are observing is a difference between mathematical diffentiation and backpropagation. There is no functional dependency in the underlying graph of computation between your variables and your loss. The reason for that is because you used an array, where you copied values into. So while your loss depends on values of "view2" it does not depend on values of outputs of your model. You have to avoid any value assignments when defining your computation.
x = np.array([0])
x[0] = output_of_network
loss = LA.norm(x) # wrong
loss = LA.norm(output_of_network) # correct
I have been trying to replicate the alex graves handwriting synthesis model, and I did this with tensorflow, and python on a 1080Ti GPU with cuda,
I exactly replicated all of the features explained in the paper and even clipped the respective gradient values in place, but I have real difficulty training it.
I also preproccessed the data in the way explained in the paper, including normalizing the X and y offsets, but the problem is that the training usually can't lower the negative log likelihood more than 1000 which in the paper it reaches -1000, and after that i see NaN weights.
The only extra thing I did was to add 0.0000001 to the conditional probability of every stroke to prevent NaN values in log likelihood.
Any tips or suggestions or experience with such a task?
this is the cell code I use,
class Custom_Cell(RNNCell):
def __init__(self,forget_bias,bias,one_hot_vector, hidden_layer_nums=[700,700,700], mixture_num=10, attention_num=4):
self.bias = bias
self.lstms = []
for i in hidden_layer_nums:
self.lstms.append(LSTMCell(num_units=i, initializer=tf.truncated_normal_initializer(0.075), dtype=tf.float32, forget_bias=forget_bias))
self.attention_num = attention_num
self.mixture_num = mixture_num
self.state_size = 2*sum(hidden_layer_nums) + 3*self.attention_num
self.attention_var_num = 3*self.attention_num
self.output_size = 6*self.mixture_num + 1 + 1
self.one_hot_vector = one_hot_vector
self.lstm_num = len(hidden_layer_nums)
self.hidden_layer_nums = hidden_layer_nums
temp_shape = self.one_hot_vector.shape
self.char_num = temp_shape[2]
self.i_to_h = []
self.w_to_h = []
self.h_to_h = []
self.prev_h_to_h = []
self.lstm_bias = []
self.lstm_to_attention_weights = tf.get_variable("lstms/first_to_attention_mtrx",shape=[hidden_layer_nums[0],self.attention_var_num],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True)
self.lstm_to_attention_bias = tf.get_variable("lstms/first_to_attention_bias",shape=[self.attention_var_num],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True)
self.all_to_output_mtrx = []
for i in range(self.lstm_num):
self.all_to_output_mtrx.append( tf.get_variable("lstms/to_output_mtrx_" + str(i), shape=[hidden_layer_nums[i],self.output_size-1],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True))
self.all_to_output_bias = tf.get_variable("lstms/output_bias",shape=[self.output_size-1],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True)
for i in range(self.lstm_num):
self.i_to_h.append(tf.get_variable("lstms/i_to_h_"+str(i),shape=[3,hidden_layer_nums[i]],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True))
self.w_to_h.append(tf.get_variable("lstms/w_to_h_"+str(i),shape=[self.char_num,hidden_layer_nums[i]],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True))
self.h_to_h.append(tf.get_variable("lstms/h_to_h_"+str(i),shape=[hidden_layer_nums[i],hidden_layer_nums[i]],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True))
self.lstm_bias.append(tf.get_variable("lstms/bias_" + str(i),shape=[hidden_layer_nums[i]],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True))
if not i == 0:
self.prev_h_to_h.append(
tf.get_variable("lstms/prev_h_to_h_" + str(i), shape=[hidden_layer_nums[i-1], hidden_layer_nums[i]],
dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.075),
trainable=True))
def __call__(self, inputs, state, scope=None):
# Extracting previous configuration and vectors
splitarray = []
for i in self.hidden_layer_nums:
splitarray.append(i)
splitarray.append(i)
splitarray.append(3*self.attention_num)
splitted = tf.split(state,splitarray,axis=1)
prev_tuples = []
for i in range(self.lstm_num):
newtuple = LSTMStateTuple(splitted[2*i],splitted[2*i + 1])
prev_tuples.append(newtuple)
prev_attention_vec = splitted[2*self.lstm_num]
new_attention_vec = 0
next_states = []
most_attended = 0
last_output = 0
for i in range(self.lstm_num):
prev_c, prev_h = prev_tuples[i]
cell = self.lstms[i]
if i == 0:
with tf.name_scope("layer_1"):
w, most_attended = self.gaussian_attention(self.one_hot_vector,prev_attention_vec)
input_vec = tf.matmul(inputs,self.i_to_h[0]) + tf.matmul(prev_h,self.h_to_h[0]) + tf.matmul(w,self.w_to_h[0]) + self.lstm_bias[0]
_, new_state = cell(input_vec, prev_tuples[0])
new_c, new_h = new_state
next_states.append(new_c)
next_states.append(new_h)
last_output = tf.matmul(new_h,self.all_to_output_mtrx[0])
with tf.name_scope("attention_layer"):
temp_attention = tf.matmul(new_h,self.lstm_to_attention_weights) + self.lstm_to_attention_bias
new_alpha, new_beta, new_kappa = tf.split(temp_attention,[self.attention_num,self.attention_num,self.attention_num],axis=1)
old_alpha, old_beta, old_kappa = tf.split(prev_attention_vec,[self.attention_num,self.attention_num,self.attention_num], axis=1)
new_alpha = tf.exp(new_alpha)
new_beta = tf.exp(new_beta)
new_kappa = tf.exp(new_kappa) + old_kappa
new_attention_vec = tf.concat([new_alpha,new_beta,new_kappa],axis=1)
else:
with tf.name_scope("layer_" + str(i)):
w, most_attended = self.gaussian_attention(self.one_hot_vector,new_attention_vec)
input_vec = tf.matmul(inputs,self.i_to_h[i]) + tf.matmul(next_states[-1],self.prev_h_to_h[i-1]) + tf.matmul(prev_h,self.h_to_h[i]) + tf.matmul(w,self.w_to_h[i]) + self.lstm_bias[i]
_,new_state = cell(input_vec,prev_tuples[i])
new_c, new_h = new_state
next_states.append(new_c)
next_states.append(new_h)
last_output = last_output + tf.matmul(new_h, self.all_to_output_mtrx[i])
with tf.name_scope("output"):
last_output = last_output + self.all_to_output_bias
next_states.append(new_attention_vec)
state_to_return = tf.concat(next_states,axis=1)
output_split_param = [1,self.mixture_num,2*self.mixture_num,2*self.mixture_num,self.mixture_num]
binomial_param, pi, mu, sigma, rho = tf.split(last_output,output_split_param,axis=1)
binomial_param = tf.divide(1.,1.+tf.exp(binomial_param))
pi = tf.nn.softmax(tf.multiply(pi,1.+self.bias),axis=1)
mu = mu
sigma = tf.exp(sigma-self.bias)
rho = tf.tanh(rho)
output_to_return = tf.concat([most_attended, binomial_param, pi, mu, sigma, rho],axis=1)
return output_to_return, state_to_return
def state_size(self):
return self.state_size
def output_size(self):
return self.output_size
def gaussian_attention(self,sequence,params):
with tf.name_scope("attention_calculation"):
alpha, beta, kappa = tf.split(params,[self.attention_num,self.attention_num,self.attention_num],axis=1)
seq_shape = sequence.shape
seq_length = seq_shape[1]
temp_vec = 20*np.asarray(range(seq_length),dtype=float)
final_result = 0
alpha = tf.split(alpha,self.attention_num,1)
beta = tf.split(beta,self.attention_num,1)
kappa = tf.split(kappa,self.attention_num,1)
for i in range(self.attention_num):
alpha_now = alpha[i]
beta_now = beta[i]
kappa_now = kappa[i]
result = kappa_now - temp_vec
result = tf.multiply(tf.square(result),tf.negative(beta_now))
result = tf.multiply(tf.exp(result),alpha_now)
final_result = final_result+result
most_attended = tf.argmax(final_result,axis=1)
most_attended = tf.reshape(tf.cast(most_attended,dtype=tf.float32),shape=[-1,1])
final_result = tf.tile(tf.reshape(final_result,[-1,seq_shape[1],1]),[1,1,seq_shape[2]])
to_return = tf.reduce_sum(tf.multiply(final_result,sequence),axis=1)
return to_return, most_attended
and this is the rnn with loss network:
`to_write_one_hot = tf.placeholder(dtype=tf.float32,shape=(None,line_length,dict_length))
sequence = tf.placeholder(dtype=tf.float32,shape=(None,None,3))
sequence_shift = tf.placeholder(dtype=tf.float32,shape=(None,None,3))
bias = tf.placeholder(shape=[1],dtype=tf.float32)
sequence_length = tf.placeholder(shape=(None),dtype=tf.int32)
forget_bias_placeholder = tf.placeholder(shape=(None),dtype=tf.float32)
graves_cell = Custom_Cell(forget_bias=1,one_hot_vector=to_write_one_hot,hidden_layer_nums=hidden_layer_nums,mixture_num=mixture_num,bias=bias,attention_num=attention_num)
output, state = tf.nn.dynamic_rnn(graves_cell,sequence,dtype=tf.float32,sequence_length=sequence_length)
with tf.name_scope("loss_layer"):
mask = tf.sign(tf.reduce_max(tf.abs(output), 2))
most_attended, binomial_param, pi, mu, sigma, rho = tf.split(output,[1,1,mixture_num,2*mixture_num,2*mixture_num,mixture_num], axis=2)
pi = tf.split(pi,mixture_num,axis=2)
mu = tf.split(mu,mixture_num,axis=2)
sigma = tf.split(sigma,mixture_num,axis=2)
rho = tf.split(rho,mixture_num,axis=2)
negative_log_likelihood = 0
probability = 0
x1, x2, e = tf.split(sequence_shift,3,axis=2)
for i in range(mixture_num):
pi_now = pi[i]
mu_now = tf.split(mu[i],2,axis=2)
mu_1 = mu_now[0]
mu_2 = mu_now[1]
sigma_now = tf.split(sigma[i],2,axis=2)
sigma_1 = sigma_now[0] + (1-tf.reshape(mask, [-1,max_len,1]))
sigma_2 = sigma_now[1] + (1-tf.reshape(mask, [-1,max_len,1]))
rho_now = rho[i]
Z = tf.divide(tf.square(x1-mu_1),tf.square(sigma_1)) + tf.divide(tf.square(x2-mu_2),tf.square(sigma_2)) - tf.divide(tf.multiply(tf.multiply(x1-mu_1,x2-mu_2),2*rho_now),tf.multiply(sigma_1,sigma_2))
prob = tf.exp(tf.div(tf.negative(Z),2*(1-tf.square(rho_now))))
Normalizing_factor = 2*np.pi*tf.multiply(sigma_1,sigma_2)
Normalizing_factor = tf.multiply(Normalizing_factor,tf.sqrt(1-tf.square(rho_now)))
prob = tf.divide(prob,Normalizing_factor)
prob = tf.multiply(pi_now,prob)
probability = probability + prob
binomial_likelihood = tf.multiply(binomial_param,e) + tf.multiply(1-binomial_param,1-e)
probability = tf.multiply(probability,binomial_likelihood)
probability = probability + (1-tf.reshape(mask,[-1,max_len,1]))
temp_tensor = tf.multiply(mask, tf.log(tf.reshape(probability,[-1,max_len]) + mask*0.00001))
negative_log_likelihood_0 = tf.negative(tf.reduce_sum(temp_tensor,axis=1))
negative_log_likelihood_1 = tf.divide(negative_log_likelihood_0,tf.reshape(tf.cast(sequence_length, dtype=tf.float32), shape=[-1,1]))
negative_log_likelihood_1 = tf.reduce_mean(negative_log_likelihood_1)
tf.summary.scalar("average_per_timestamp_log_likelihood", negative_log_likelihood_1)
negative_log_likelihood = tf.reduce_mean(negative_log_likelihood_0)
with tf.name_scope("train_op"):
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.0001,momentum=0.9, decay=0.95,epsilon=0.0001)
gvs = optimizer.compute_gradients(negative_log_likelihood)
capped_gvs = []
for grad, var in gvs:
if var.name.__contains__("rnn"):
capped_gvs.append((tf.clip_by_value(grad,-10,10),var))
else:
capped_gvs.append((tf.clip_by_value(grad,-100,100),var))
train_op = optimizer.apply_gradients(capped_gvs)
`
Edit.1. I discovered that I was clipping gradients in a wrong way, the correct way was to introduce a new 'op' as explained by https://github.com/tensorflow/tensorflow/issues/2793 to clip only the output gradients of the whole network and lstm cells.
#tf.custom_gradient
def clip_gradient(x, clip):
def grad(dresult):
return [tf.clip_by_norm(dresult, clip)]
return x, grad
add the lines above to your code and use the function on any variable you want to clip the gradient in back propagation!
I should still see my results.
Edit 2.
The changed Model code is:
from tensorflow.contrib.rnn import RNNCell
from tensorflow.contrib.rnn import LSTMCell
from tensorflow.contrib.rnn import LSTMStateTuple
import tensorflow as tf
import numpy as np
#tf.custom_gradient
def clip_gradient_lstm(x):
def grad(dresult):
return [tf.clip_by_value(dresult,-10,10)]
return x, grad
#tf.custom_gradient
def clip_gradient_output(x):
def grad(dresult):
return [tf.clip_by_value(dresult,-100,100)]
return x, grad
def length_of(seq):
used = tf.sign(tf.reduce_max(tf.abs(seq),axis=2))
length = tf.reduce_sum(used,1)
length = tf.cast(length,tf.int32)
return length
class Custom_Cell(RNNCell):
def __init__(self,forget_bias,bias,one_hot_vector, hidden_layer_nums=[700,700,700], mixture_num=10, attention_num=4):
self.bias = bias
self.lstms = []
for i in hidden_layer_nums:
self.lstms.append(LSTMCell(num_units=i, initializer=tf.truncated_normal_initializer(0.075), dtype=tf.float32, forget_bias=forget_bias))
self.attention_num = attention_num
self.mixture_num = mixture_num
self.state_size = 2*sum(hidden_layer_nums) + 3*self.attention_num
self.attention_var_num = 3*self.attention_num
self.output_size = 6*self.mixture_num + 1 + 1
self.one_hot_vector = one_hot_vector
self.lstm_num = len(hidden_layer_nums)
self.hidden_layer_nums = hidden_layer_nums
temp_shape = self.one_hot_vector.shape
self.char_num = temp_shape[2]
self.i_to_h = []
self.w_to_h = []
self.h_to_h = []
self.prev_h_to_h = []
self.lstm_bias = []
self.lstm_to_attention_weights = tf.get_variable("lstms/first_to_attention_mtrx",shape=[hidden_layer_nums[0],self.attention_var_num],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True)
self.lstm_to_attention_bias = tf.get_variable("lstms/first_to_attention_bias",shape=[self.attention_var_num],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True)
self.all_to_output_mtrx = []
for i in range(self.lstm_num):
self.all_to_output_mtrx.append( tf.get_variable("lstms/to_output_mtrx_" + str(i), shape=[hidden_layer_nums[i],self.output_size-1],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True))
self.all_to_output_bias = tf.get_variable("lstms/output_bias",shape=[self.output_size-1],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True)
for i in range(self.lstm_num):
self.i_to_h.append(tf.get_variable("lstms/i_to_h_"+str(i),shape=[3,hidden_layer_nums[i]],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True))
self.w_to_h.append(tf.get_variable("lstms/w_to_h_"+str(i),shape=[self.char_num,hidden_layer_nums[i]],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True))
self.h_to_h.append(tf.get_variable("lstms/h_to_h_"+str(i),shape=[hidden_layer_nums[i],hidden_layer_nums[i]],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True))
self.lstm_bias.append(tf.get_variable("lstms/bias_" + str(i),shape=[hidden_layer_nums[i]],dtype=tf.float32,initializer=tf.truncated_normal_initializer(stddev=0.075),trainable=True))
if not i == 0:
self.prev_h_to_h.append(
tf.get_variable("lstms/prev_h_to_h_" + str(i), shape=[hidden_layer_nums[i-1], hidden_layer_nums[i]],
dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.075),
trainable=True))
def __call__(self, inputs, state, scope=None):
# Extracting previous configuration and vectors
splitarray = []
for i in self.hidden_layer_nums:
splitarray.append(i)
splitarray.append(i)
splitarray.append(3*self.attention_num)
splitted = tf.split(state,splitarray,axis=1)
prev_tuples = []
for i in range(self.lstm_num):
newtuple = LSTMStateTuple(splitted[2*i],splitted[2*i + 1])
prev_tuples.append(newtuple)
prev_attention_vec = splitted[2*self.lstm_num]
new_attention_vec = 0
next_states = []
most_attended = 0
last_output = 0
for i in range(self.lstm_num):
prev_c, prev_h = prev_tuples[i]
cell = self.lstms[i]
if i == 0:
with tf.name_scope("layer_1"):
w, most_attended = self.gaussian_attention(self.one_hot_vector,prev_attention_vec)
input_vec = tf.matmul(inputs,self.i_to_h[0]) + tf.matmul(prev_h,self.h_to_h[0]) + tf.matmul(w,self.w_to_h[0]) + self.lstm_bias[0]
_, new_state = cell(input_vec, prev_tuples[0])
new_c, new_h = new_state
new_h = clip_gradient_lstm(new_h)
next_states.append(new_c)
next_states.append(new_h)
last_output = tf.matmul(new_h,self.all_to_output_mtrx[0])
with tf.name_scope("attention_layer"):
temp_attention = tf.matmul(new_h,self.lstm_to_attention_weights) + self.lstm_to_attention_bias
new_alpha, new_beta, new_kappa = tf.split(temp_attention,[self.attention_num,self.attention_num,self.attention_num],axis=1)
old_alpha, old_beta, old_kappa = tf.split(prev_attention_vec,[self.attention_num,self.attention_num,self.attention_num], axis=1)
new_alpha = tf.exp(new_alpha)
new_beta = tf.exp(new_beta)
new_kappa = tf.exp(new_kappa) + old_kappa
new_attention_vec = tf.concat([new_alpha,new_beta,new_kappa],axis=1)
else:
with tf.name_scope("layer_" + str(i)):
w, most_attended = self.gaussian_attention(self.one_hot_vector,new_attention_vec)
input_vec = tf.matmul(inputs,self.i_to_h[i]) + tf.matmul(next_states[-1],self.prev_h_to_h[i-1]) + tf.matmul(prev_h,self.h_to_h[i]) + tf.matmul(w,self.w_to_h[i]) + self.lstm_bias[i]
_,new_state = cell(input_vec,prev_tuples[i])
new_c, new_h = new_state
new_h = clip_gradient_lstm(new_h)
next_states.append(new_c)
next_states.append(new_h)
last_output = last_output + tf.matmul(new_h, self.all_to_output_mtrx[i])
with tf.name_scope("output"):
last_output = last_output + self.all_to_output_bias
last_output = clip_gradient_output(last_output)
next_states.append(new_attention_vec)
state_to_return = tf.concat(next_states,axis=1)
output_split_param = [1,self.mixture_num,2*self.mixture_num,2*self.mixture_num,self.mixture_num]
binomial_param, pi, mu, sigma, rho = tf.split(last_output,output_split_param,axis=1)
binomial_param = tf.divide(1.,1.+tf.exp(binomial_param))
pi = tf.nn.softmax(tf.multiply(pi,1.+self.bias),axis=1)
mu = mu
sigma = tf.exp(sigma-self.bias)
rho = tf.tanh(rho)
output_to_return = tf.concat([most_attended, binomial_param, pi, mu, sigma, rho],axis=1)
return output_to_return, state_to_return
def state_size(self):
return self.state_size
def output_size(self):
return self.output_size
def gaussian_attention(self,sequence,params):
with tf.name_scope("attention_calculation"):
alpha, beta, kappa = tf.split(params,[self.attention_num,self.attention_num,self.attention_num],axis=1)
seq_shape = sequence.shape
seq_length = seq_shape[1]
temp_vec = np.asarray(range(seq_length),dtype=float)
final_result = 0
alpha = tf.split(alpha,self.attention_num,1)
beta = tf.split(beta,self.attention_num,1)
kappa = tf.split(kappa,self.attention_num,1)
for i in range(self.attention_num):
alpha_now = alpha[i]
beta_now = beta[i]
kappa_now = kappa[i]
result = kappa_now - temp_vec
result = tf.multiply(tf.square(result),tf.negative(beta_now))
result = tf.multiply(tf.exp(result),alpha_now)
final_result = final_result+result
most_attended = tf.argmax(final_result,axis=1)
most_attended = tf.reshape(tf.cast(most_attended,dtype=tf.float32),shape=[-1,1])
final_result = tf.tile(tf.reshape(final_result,[-1,seq_shape[1],1]),[1,1,seq_shape[2]])
to_return = tf.reduce_sum(tf.multiply(final_result,sequence),axis=1)
return to_return, most_attended
and the Training is done by
with tf.name_scope("train_op"):
optimizer =
tf.train.RMSPropOptimizer(learning_rate=0.0001,momentum=0.9, decay=0.95,epsilon=0.0001,centered=True)
train_op = optimizer.minimize(negative_log_likelihood)
and right now is still in training, but it is now as low as -10.
I'm trying to implement a CNN using Theano and tried to test my code with a small sample-set of my bigger dataset. I'm trying to categorize a set of 8280 pictures(of 250*250 sizes) into 115 classes and my sample set is a set of 32 pictures of the first two classes(16 pictures from each). The problem I'm experiencing is that from the first epoch, the training loss in NaN and It will not change in the further epochs.
from __future__ import print_function
import sys
import os
import time
import numpy as np
import theano
import theano.tensor as T
import lasagne
import re
import cv2
from lasagne.layers import Conv2DLayer, MaxPool2DLayer , DropoutLayer
from lasagne.layers import InputLayer, DenseLayer, batch_norm
def split_list(a_list):
half = len(a_list)/2
return a_list[:half], a_list[half:]
def load_dataset(path=''):
cat_list = []
filelist = sorted(os.listdir(path))
trainlist = []
testlist = []
tmptrain = []
tmptest = []
max_id = 0
for f in filelist:
match = re.match(r'C(\d+)([F|G])(\d+)\.PNG', f)
id = int(match.group(1)) - 1
max_id = max(max_id,id)
fg_class = match.group(2)
fg_id = int(match.group(3))
if id not in [p[0] for p in cat_list]:
cat_list.append([id, [], []])
if fg_class == 'G':
cat_list[-1][1].append(f)
else:
cat_list[-1][2].append(f)
for f in cat_list:
id = f[0]
trainG, testG = split_list(f[1])
trainF, testF = split_list(f[2])
tmptrain = tmptrain + [(id, 1, F) for F in trainF] + [(id, 0, G) for G in trainG] # (Class_id,Forgery,Img)
tmptest = tmptest + [(id, 1, F) for F in testF] + [(id, 0, F) for F in testG]
X_train = np.array([cv2.imread(path+f[2],0) for f in tmptrain]).astype(np.int32)
y_train = np.array([f[0] for f in tmptrain]).astype(np.int32)
X_test = np.array([cv2.imread(path+f[2],0) for f in tmptest]).astype(np.int32)
y_test = np.array([f[0] for f in tmptest]).astype(np.int32)
fg_train = np.array([f[1] for f in tmptrain]).astype(np.int32)
fg_test = np.array([f[1] for f in tmptest]).astype(np.int32)
X_train = np.expand_dims(X_train,axis=1).astype(np.int32)
X_test = np.expand_dims(X_test, axis=1).astype(np.int32)
return X_train, y_train, X_test, y_test, fg_train , fg_test
def ExplicitNegativeCorrelation(net,layer='fc2',lr=0.00001):
for param in lasagne.layers.get_all_params(net[layer]):
if param.name.startswith('W'):
W = param
mean = T.mean(W,0) * lr
W = W - mean#T.mean(T.mean(W,0))
def ImplicitNegativeCorrelation(MSE,Cross,Hinge):
mean = T.mean((MSE+Cross+Hinge),axis=0)
return ((MSE-mean)**2+(Cross-mean)**2+(Hinge-mean)**2)/3
def build_cnn(inputvar,input_shape, trained_weights=None):
net = {}
net['input'] = InputLayer(input_shape,input_var=inputvar)
net['drop_input'] = DropoutLayer(net['input'],p=0.2)
net['conv1'] = batch_norm(Conv2DLayer(net['input'], num_filters=96, filter_size=11, stride=4, flip_filters=False))#,W=lasagne.init.HeNormal()))
net['pool1'] = MaxPool2DLayer(net['conv1'], pool_size=3, stride=2)
net['conv2'] = batch_norm(Conv2DLayer(net['pool1'], num_filters=256, filter_size=5, pad=2, flip_filters=False))#, W=lasagne.init.HeNormal()))
net['pool2'] = MaxPool2DLayer(net['conv2'], pool_size=3, stride=2)
net['conv3'] = batch_norm(Conv2DLayer(net['pool2'], num_filters=384, filter_size=3, pad=1, flip_filters=False))#, W=lasagne.init.HeNormal()))
net['conv4'] = batch_norm(Conv2DLayer(net['conv3'], num_filters=384, filter_size=3, pad=1, flip_filters=False))#, W=lasagne.init.HeNormal()))
net['conv5'] = batch_norm(Conv2DLayer(net['conv4'], num_filters=256, filter_size=3, pad=1, flip_filters=False))#, W=lasagne.init.HeNormal()))
net['pool5'] = MaxPool2DLayer(net['conv5'], pool_size=3, stride=2)
net['fc1'] = batch_norm(DenseLayer(net['pool5'], num_units=2048))
net['drop_fc1'] = DropoutLayer(net['fc1'])
net['fc2'] = batch_norm(DenseLayer(net['drop_fc1'], num_units=2048))
net['fc_class'] = batch_norm(DenseLayer(net['fc2'],num_units=115))
return net
def iterate_minibatches(inputs, targets_class,targets_verif, batchsize, shuffle=False):
assert len(inputs) == len(targets_class)
assert len(inputs) == len(targets_verif)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets_class[excerpt], targets_verif[excerpt]
def main(num_epochs=500):
print("Loading data...")
X_train, y_train, X_test, y_test, fg_train, fg_test = load_dataset('./signatures/tmp4/')
X_val, y_val, fg_val = X_train, y_train, fg_train
print(y_train.shape)
input_var = T.tensor4('inputs')
target_var_class = T.ivector('targets')
network = build_cnn(input_var, (None, 1, 250, 250))
class_prediction = lasagne.layers.get_output(network['fc_class']) # ,inputs={network['input']:input_var})
loss_class = lasagne.objectives.categorical_crossentropy(class_prediction, target_var_class)
loss = loss_class.mean()
params = lasagne.layers.get_all_params([network['fc_class']], trainable=True)
lr = 0.01
updates = lasagne.updates.nesterov_momentum(
loss, params, learning_rate=lr, momentum=0.9)
test_prediction_class = lasagne.layers.get_output(network['fc_class'], deterministic=True)
test_loss_class = lasagne.objectives.categorical_crossentropy(test_prediction_class,
target_var_class)
test_loss_class = test_loss_class.mean()
test_acc_class = T.mean(T.eq(T.argmax(test_prediction_class, axis=1), target_var_class),
dtype=theano.config.floatX)
predict_class = theano.function([input_var], T.argmax(test_prediction_class,axis=1))
train_fn = theano.function([input_var, target_var_class], loss, updates=updates)
val_fn_class = theano.function([input_var, target_var_class], [test_loss_class, test_acc_class])
print("Starting training...")
BatchSize = 2
for epoch in range(num_epochs):
train_err = 0
train_batches = 0
start_time = time.time()
for batch in iterate_minibatches(X_train, y_train,fg_train, BatchSize, shuffle=True):
inputs, targets_class, targets_verif = batch
train_err += train_fn(inputs, targets_class)
#ExplicitNegativeCorrelation(network, layer='fc2',lr=lr/10)
print(targets_class,predict_class(inputs))
train_batches += 1
val_err_class = 0
val_acc_class = 0
val_batches = 0
for batch in iterate_minibatches(X_val, y_val, fg_val, BatchSize, shuffle=False):
inputs, targets_class, targets_verif = batch
err_class, acc_class = val_fn_class(inputs, targets_class)
val_err_class += err_class
val_acc_class += acc_class
val_batches += 1
print("Epoch {} of {} took {:.3f}s".format(
epoch + 1, num_epochs, time.time() - start_time))
print(" training loss:\t\t{:.6f}".format(train_err / train_batches))
print(" Classification loss:\t\t{:.6f}".format(val_err_class / val_batches))
print(" Classification accuracy:\t\t{:.2f} %".format(
val_acc_class / val_batches * 100))
test_err_class = 0
test_acc_class = 0
test_err_verif = 0
test_acc_verif = 0
test_batches = 0
for batch in iterate_minibatches(X_test, y_test, fg_test, BatchSize, shuffle=False):
inputs, targets_class, targets_verif = batch
err_class, acc_class = val_fn_class(inputs, targets_class)
test_err_class += err_class
test_acc_class += acc_class
test_batches += 1
print("Final results:")
print(" test loss (Classification):\t\t\t{:.6f}".format(test_err_class / test_batches))
print(" test accuracy (Classification):\t\t{:.2f} %".format(
test_acc_class / test_batches * 100))
if __name__ == '__main__':
main()
I've tried to put lasagne.nonlinearities.softmax in the DenseLayers but it does fix the NaN issue but the accuracy of the Training model will not be any good, it will be fluctuating between 0 to 25%.(after 50 epochs!).
I have implemented a load_dataset function which I think that works correctly (I've tested the function multiple times), and I'm giving the class id of each picture as the target in the loss function. So my inputs and Targets would be like this:
Input Shape: (BatchSize, 1, 250, 250)
Target Shape: (BatchSize, 1) : vector of class ids
I've uploaded my sample-set here in this link.
It looks like we have 4 classes, according to the data, so I changed loading code to reflect it:
y_train = np.array([f[0] * 2 + f[1] for f in tmptrain]).astype(np.int32)
y_test = np.array([f[0] * 2 + f[1] for f in tmptest]).astype(np.int32)
Number of units in output layer should be equal to the number of classes, so I added an output layer with SoftMax:
net['fo_class'] = DenseLayer(net['fc_class'],num_units=4,
nonlinearity=lasagne.nonlinearities.softmax)
I suggest removing dropout layer just after inputs β you can compare outcomes with it and without it to make sure of that
Batch size = 2 is too small and learning rate is too high
Here is an example of code with those changes:
from __future__ import print_function
import sys
import os
import time
import numpy as np
import theano
import theano.tensor as T
import lasagne
import re
import cv2
from lasagne.layers import Conv2DLayer, MaxPool2DLayer , DropoutLayer
from lasagne.layers import InputLayer, DenseLayer
def split_list(a_list):
half = len(a_list)/2
return a_list[:half], a_list[half:]
def load_dataset(path=''):
cat_list = []
filelist = sorted(os.listdir(path))
tmptrain = []
tmptest = []
max_id = 0
for f in filelist:
match = re.match(r'C(\d+)([F|G])(\d+)\.PNG', f)
id = int(match.group(1)) - 1
max_id = max(max_id,id)
fg_class = match.group(2)
if id not in [p[0] for p in cat_list]:
cat_list.append([id, [], []])
if fg_class == 'G':
cat_list[-1][1].append(f)
else:
cat_list[-1][2].append(f)
for f in cat_list:
id = f[0]
trainG, testG = split_list(f[1])
trainF, testF = split_list(f[2])
tmptrain = tmptrain + [(id, 1, F) for F in trainF] + [(id, 0, G) for G in trainG]
tmptest = tmptest + [(id, 1, F) for F in testF] + [(id, 0, F) for F in testG]
X_train = np.array([cv2.imread(path+f[2],0) for f in tmptrain]).astype(np.float32)
y_train = np.array([f[0] * 2 + f[1] for f in tmptrain]).astype(np.int32)
X_test = np.array([cv2.imread(path+f[2],0) for f in tmptest]).astype(np.float32)
y_test = np.array([f[0] * 2 + f[1] for f in tmptest]).astype(np.int32)
fg_train = np.array([f[1] for f in tmptrain]).astype(np.float32)
fg_test = np.array([f[1] for f in tmptest]).astype(np.float32)
X_train = np.expand_dims(X_train,axis=1).astype(np.float32)
X_test = np.expand_dims(X_test, axis=1).astype(np.float32)
return X_train, y_train, X_test, y_test, fg_train , fg_test
def ExplicitNegativeCorrelation(net,layer='fc2',lr=0.00001):
for param in lasagne.layers.get_all_params(net[layer]):
if param.name.startswith('W'):
W = param
mean = T.mean(W,0) * lr
W = W - mean
def ImplicitNegativeCorrelation(MSE,Cross,Hinge):
mean = T.mean((MSE+Cross+Hinge),axis=0)
return ((MSE-mean)**2+(Cross-mean)**2+(Hinge-mean)**2)/3
def build_cnn(inputvar,input_shape, trained_weights=None):
net = {}
net['input'] = InputLayer(input_shape,input_var=inputvar)
net['conv1'] = Conv2DLayer(net['input'], num_filters=96, filter_size=11, stride=4)
net['pool1'] = MaxPool2DLayer(net['conv1'], pool_size=3, stride=2)
net['conv2'] = Conv2DLayer(net['pool1'], num_filters=256, filter_size=5, pad=2)
net['pool2'] = MaxPool2DLayer(net['conv2'], pool_size=3, stride=2)
net['conv3'] = Conv2DLayer(net['pool2'], num_filters=384, filter_size=3, pad=1)
net['conv4'] = Conv2DLayer(net['conv3'], num_filters=384, filter_size=3, pad=1)
net['conv5'] = Conv2DLayer(net['conv4'], num_filters=256, filter_size=3, pad=1)
net['pool5'] = MaxPool2DLayer(net['conv5'], pool_size=3, stride=2)
net['fc1'] = DenseLayer(net['pool5'], num_units=2048)
net['drop_fc1'] = DropoutLayer(net['fc1'])
net['fc2'] = DenseLayer(net['drop_fc1'], num_units=2048)
net['fc_class'] = DenseLayer(net['fc2'],num_units=115)
net['fo_class'] = DenseLayer(net['fc_class'],num_units=4,
nonlinearity=lasagne.nonlinearities.softmax)
return net
def iterate_minibatches(inputs, targets_class,targets_verif, batchsize, shuffle=False):
assert len(inputs) == len(targets_class)
assert len(inputs) == len(targets_verif)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets_class[excerpt], targets_verif[excerpt]
def main(num_epochs=500):
print("Loading data...")
X_train, y_train, X_test, y_test, fg_train, fg_test = load_dataset('./signatures/tmp4/')
X_train /= 255
X_val, y_val, fg_val = X_train, y_train, fg_train
print(y_train.shape)
check = X_train[0][0]
print(check)
input_var = T.tensor4('inputs')
target_var_class = T.ivector('targets')
network = build_cnn(input_var, (None, 1, 250, 250))
class_prediction = lasagne.layers.get_output(network['fo_class'])
loss_class = lasagne.objectives.categorical_crossentropy(class_prediction, target_var_class)
loss = loss_class.mean()
params = lasagne.layers.get_all_params([network['fo_class']], trainable=True)
lr = 0.0007
updates = lasagne.updates.nesterov_momentum(
loss, params, learning_rate=lr, momentum=0.9)
test_prediction_class = lasagne.layers.get_output(network['fo_class'], deterministic=True)
test_loss_class = lasagne.objectives.categorical_crossentropy(test_prediction_class,
target_var_class)
test_loss_class = test_loss_class.mean()
test_acc_class = T.mean(T.eq(T.argmax(test_prediction_class, axis=1), target_var_class),
dtype=theano.config.floatX)
predict_class = theano.function([input_var], T.argmax(test_prediction_class,axis=1))
train_fn = theano.function([input_var, target_var_class], loss, updates=updates)
val_fn_class = theano.function([input_var, target_var_class], [test_loss_class, test_acc_class])
print("Starting training...")
BatchSize = 16
for epoch in range(num_epochs):
train_err = 0
train_batches = 0
start_time = time.time()
for batch in iterate_minibatches(X_train, y_train,fg_train, BatchSize, shuffle=True):
inputs, targets_class, targets_verif = batch
train_err += train_fn(inputs, targets_class)
print(targets_class,predict_class(inputs))
train_batches += 1
val_err_class = 0
val_acc_class = 0
val_batches = 0
for batch in iterate_minibatches(X_val, y_val, fg_val, BatchSize, shuffle=False):
inputs, targets_class, targets_verif = batch
err_class, acc_class = val_fn_class(inputs, targets_class)
val_err_class += err_class
val_acc_class += acc_class
val_batches += 1
print("Epoch {} of {} took {:.3f}s".format(
epoch + 1, num_epochs, time.time() - start_time))
print(" training loss:\t\t{:.6f}".format(train_err / train_batches))
print(" Classification loss:\t\t{:.6f}".format(val_err_class / val_batches))
print(" Classification accuracy:\t\t{:.2f} %".format(
val_acc_class / val_batches * 100))
test_err_class = 0
test_acc_class = 0
test_batches = 0
for batch in iterate_minibatches(X_test, y_test, fg_test, BatchSize, shuffle=False):
inputs, targets_class, targets_verif = batch
err_class, acc_class = val_fn_class(inputs, targets_class)
test_err_class += err_class
test_acc_class += acc_class
test_batches += 1
print("Final results:")
print(" test loss (Classification):\t\t\t{:.6f}".format(test_err_class / test_batches))
print(" test accuracy (Classification):\t\t{:.2f} %".format(
test_acc_class / test_batches * 100))
if __name__ == '__main__':
main()
I try to train an MLP that just consists of a softmax. In tensorflow tutorials, they used mnist dataset, however, I try to use another one, Poker Hand Dataset(10 classes). But by my program, the accuracy is always about 50%, that is so bothersome.
Here is my code
# coding=utf-8
from __future__ import print_function
import tensorflow as tf
import numpy as np
import datetime
class Arc:
def __init__(self):
self.filenames = ['train.csv', 'test.csv']
self.batchSize = 128
self.trainIters = 100000
self.totalEpoch = 1
self.min_after_dequeue = 256
self.capacity = 640
def readData(self, filenames=None):
files = tf.train.string_input_producer(filenames)
reader = tf.TextLineReader()
key, value = reader.read(files)
record_defaults = [[1], [1], [4], [1], [8], [1], [2], [1], [11], [1], [5]]
s1, c1, s2, c2, s3, c3, s4, c4, s5, c5, hand = tf.decode_csv(value,
record_defaults=record_defaults)
features = tf.pack(tf.to_float([s1, c1, s2, c2, s3, c3, s4, c4, s5, c5]))
hand = tf.one_hot(hand, 10, 1, 0, -1, tf.int32)
features_batch, hand_batch = tf.train.shuffle_batch(
[features, hand],
batch_size=self.batchSize,
capacity=self.capacity,
min_after_dequeue=self.min_after_dequeue)
return features_batch, hand_batch
def fullyConnected(self, incoming, n_units, bias=True,
regularizer=None, weight_decay=0.001, trainable=True,
name="FullyConnected"):
if isinstance(incoming, tf.Tensor):
input_shape = incoming.get_shape().as_list()
elif type(incoming) in [np.array, list, tuple]:
input_shape = np.shape(incoming)
else:
raise Exception("Invalid incoming layer")
assert len(input_shape) > 1, "Incoming Tensor shape must be at least 2-D"
n_inputs = int(np.prod(input_shape[1:]))
with tf.name_scope(name) as scope:
W_init = tf.uniform_unit_scaling_initializer(dtype=tf.float32, seed=None)
W_regul = None
if regularizer:
if regularizer == 'L1':
W_regul = lambda x: tf.mul(tf.nn.l2_loss(x), weight_decay, name='L2-Loss')
elif regularizer == 'L2':
W_regul = lambda x: tf.mul(tf.reduce_sum(tf.abs(x)), weight_decay, name='L1-Loss')
with tf.device(''):
try:
W = tf.get_variable(scope + 'W', [n_inputs, n_units], tf.float32, W_init, W_regul)
except Exception as e:
W = tf.get_variable(scope + 'W', [n_inputs, n_units], tf.float32, W_init)
if regularizer is not None:
if regularizer == 'L1':
W = lambda x: tf.mul(tf.nn.l2_loss(W), weight_decay, name='L2-Loss')
elif regularizer == 'L2':
W = lambda x: tf.mul(tf.reduce_sum(tf.abs(W)), weight_decay, name='L1-Loss')
b = None
if bias:
b_init = tf.constant_initializer(0.)
with tf.device(''):
b = tf.get_variable(scope + 'b', [n_units], tf.float32, b_init, W_regul, trainable=trainable)
inference = incoming
if len(input_shape) > 2:
inference = tf.reshape(inference, [-1, n_inputs])
inference = tf.matmul(inference, W)
if b: inference += b
return inference
def network(self, net):
net = self.fullyConnected(net, 10)
net = tf.nn.softmax(net)
return net
def run(self):
features, hand = self.readData(['train.csv'])
x = tf.placeholder(dtype=tf.float32,
shape=[None, 10],
name='Placeholder_X')
y = tf.placeholder(dtype=tf.float32,
shape=[None, 10],
name='Placeholder_Y')
pred = self.network(x)
cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices=[1]))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)
correctPred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correctPred, tf.float32))
init = tf.initialize_all_variables()
startTime = datetime.datetime.now()
with tf.Session() as sess:
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
iter = 1
while iter * self.batchSize < self.trainIters:
example, label = sess.run([features, hand])
try:
sess.run(optimizer, feed_dict={x: example, y: label})
except Exception as e:
print(e.message)
if iter % 10 == 0:
loss, acc = sess.run([cost, accuracy], feed_dict={x: example, y: label})
print("Iter " + str(iter * self.batchSize) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc))
iter += 1
coord.request_stop()
coord.join(threads)
print('all done')
endTime = datetime.datetime.now()
fitTime = (endTime - startTime)
print("Training Time:", fitTime)
if __name__ == '__main__':
net = Arc()
net.run()
I got the result as
Iter 1280, Minibatch Loss= 2.210387, Training Accuracy= 0.40625
Iter 2560, Minibatch Loss= 2.371088, Training Accuracy= 0.35156
Iter 3840, Minibatch Loss= 1.723017, Training Accuracy= 0.42188
Iter 5120, Minibatch Loss= 1.650101, Training Accuracy= 0.43750
....
....
Iter 98560, Minibatch Loss= 0.990002, Training Accuracy= 0.54688
Iter 99840, Minibatch Loss= 1.142664, Training Accuracy= 0.52344
all done
Training Time: 0:00:12.081167
What mistake did I make? I guess maybe the queue caused that?
I took a look at it and there are a lot of errors in your code
no activation function
only one layer of fully connected that has very little capacity
the print of the loss value is not displaying the correct value
no encoding of the categorical input value (encode s1 as 4 one_hot encode and c1 as 13 one_hot encode and concatenate the result)