Best methods to increase database performance? - mysql

Assuming that I have 20L records,
Approach 1: Hold all 20L records in a single table.
Approach 2: Make 20 tables and enter 1L into each.
Which is the best method to increase performance and why, or are there any other approaches?

Splitting a large table into smaller ones can give better performance -- it is called sharding when the tables are then distributed across multiple database servers -- but when you do it manually it is most definitely an antipattern.
What happens if you have 100 tables and you are looking for a row but you don't know which table has it? If you put index on the tables you'll need to do it 100 times. If somebody wants to join the data set he might need to include 100 tables in his join in some use cases. You'd need to invent your own naming conventions, document and enforce them yourself with no help from the database catalog. Backup and recovery and all the other maintenance tasks will be a nightmare....just don't do it.
Instead just break up the table by partitioning it. You get 100% of the performance improvement that you would have gotten from multiple tables but now the database is handling the details for you.

When looking for read time performance, indexes are a great way to improve the performance. However, having indexes can slow down the write time queries.
So if you are looking for a read time performance, prefer indexes.
Few things to keep in mind when creating the index
Try to avoid null values in the index
Cardinality of the columns matter. It's been observed that having a column with lower cardinality first gives better performance when compared to a column with higher cardinality
Sequence of the columns in index should match your where clause. For ex. you create a index on Col A and Col B but query on Col C, your index would not be used. So formulate your indexes according to your where clauses.
When in doubt if an index was used or not, use EXPLAIN to see which index was used.
DB indexes can be a tricky subject for the beginners but imagining it as a tree traversal helps visualize the path traced when reading the data.

The best/easiest is to have a unique table with proper indexes. On 100K lines I had 30s / query, but with an index I got 0.03s / query.
When it doesn't fit anymore you split tables (for me it's when I got to millions of lines).
And preferably on different servers.
You can then create a microservice accessing all servers and returning data to consumers like if there was only one database.
But once you do this you better not have joins, because it'll get messy replicating data on every databases.
I would stick to the first method.

Related

How does MySQL store indexes?

Just a question. On of my websites became significant slower. Loadtimes taking over 30 seconds on 30k rows. I must say queries aren't optimized so 10k queries can be fired but still, I find this taking too long... So I figured, let's check the indexes. After viewing some of the 'problem' tables I saw I made index over multiple columns but the cardinality is only shown on 1 column and the other indexes have 0 cardinality.
Did I made wrong indexes? In other words, should I make an index for each column instead of combining them?
It's almost certainly the case that you created the wrong indexes. Most people do! :-)
There's no rule to create indexes on multiple columns vs. individual columns. The best indexes to create depends on the queries you run, not your database schema.
Analyzing the queries and deciding on indexes is a meticulous process. You can use EXPLAIN to see how a given query is using existing indexes. Be sure to read the docs:
http://dev.mysql.com/doc/refman/5.1/en/using-explain.html
http://dev.mysql.com/doc/refman/5.1/en/explain-output.html

MySQL performance: many rows and columns (MyISAM)

Since I'm still in the beginning of my site design I figured now's a good time to ask this.
I know that one of the ways to optimize MySQL queries is to split your rows into seperate tables, however, that does have a few comfort issues.
What I'm considering is this: would querying a table consisting of around 1'000'000 rows and 150 columns using excellently designed indexes and getting only the needed columns from each query result in a much higher server load than splittiing the table into multiple ones, resulting in less collumns?
Big blob tables are a anti-pattern, never use them.
Normalized tables will run much much faster than a single blob.
InnoDB is optimized for many small tables that need to be joined.
Using a normalized table will save you many headaches besides:
Your data will be smaller, so more of it fits in memory.
You only store data in one place, so it cannot end up with inconsistent data.
MySQL only allows you to use one index per select per table, multiple tables means you get to use more indexes and get more speed.
Triggers on tables execute much faster.
Normalized tables are easier to maintain.
You have less indexes per table, so inserts are faster.
Indexes are smaller (fewer rows) and narrows (less columns) and will run much faster as a result.
If the data is static, you can pack the tables for greater efficiency. Here is the page in the reference manual

Are indexes good or bad for a large database?

I read on MySQL Performance Blog that when tables are large, it is better to scan full tables, instead of using indexes.
I have a table with tens of millions of rows. When conducting queries, if I use no indexes, then queries are 24 times slower than with indexes. I know lot of things may cause this (e.g., are rows stored sequentially), but can you please give me some hints what might be happening? Or how I should start examining this issue? I want to understand when use of indexes is preferred and when it's not
Thanks
The article says that when dealing with very large data sets, where the amount of rows you need to work with are approaching the number of rows that is in the table, using an index might hurt performance.
In this case, going through the index will indeed hurt performance, as long as you need more data than is present in the index.
To go through the index, the database engine first has to read large parts of the index table (it is a type of table), then for each row (or set of rows) from this result, go to the real table and start cherrypicking pages to read.
If, on the other hand, you only need to retrieve columns that area already part of the index table, then the database engine only has to read from that, and not continue on to the full table for more data.
If you end up reading most or close to most of the actual table in question, all the work required to deal with the index might be more overhead than just doing a full table-scan to begin with.
Now, this is all the article is saying. For most work dealing with a database, using indexes is the exact right thing to do.
For instance, if you need to extract a small set of rows, going through an index instead of a full table scan will be many order of magnitudes faster.
In any case, if you're in doubt, you should do some performance profiling to find out how your application behaves under different types of loads, and then start tweaking, don't take a single article as a silver bullet for anything.
For instance, one way to speed up the example queries that does a count on the pad column in the article, would be to create a single index that covered both val and pad, in this way, the count would simply be a index-scan, and not a index-scan + table-lookup, and would run faster than the full table-scan.
Your best option is to know your data, and to experiment, and to know how the tools you use work, so indeed, learn more about indexes, but in the end, it is you who decides what is best for your program.
As always, it depends. I've so far never ran into a scenario as described in that blog posts. Using indexes on my queries for large (50+ million rows) has been on the order of 100 to 10000 times faster than doing a full table scan on these big tables.
There's probably no silver bullet here, you have to test for your particular data and your particular queries.
It is good practice to put the index on each column which you used in a WHERE clause.

MySQL indexes - how many are enough?

I'm trying to fine-tune my MySQL server so I check my settings, analyzing slow-query log, and simplify my queries if possible.
Sometimes it is enough if I am indexing correctly, sometimes not. I've read somewhere (please correct me if this is stupidity) that more indexes than I need make the same effect, like if I don't have any of indexes.
How many indexes are enough? You can say it depends on hundreds of factors, but I'm curious about how can I clean up my mysql-slow.log enough to reduce server load.
Furthermore, I saw some "interesting" log entries like this:
# Query_time: 0 Lock_time: 0 Rows_sent: 22 Rows_examined: 44
SELECT * FROM `categories` ORDER BY `orderid` ASC;
The table in question contains exactly 22 rows, index set in orderid. Why is this query showing up in the log after all? Why examine 44 rows if it only contains 22?
The amount of indexing and the line of doing too much will depend on a lot of factors. On small tables like your "categories" table you usually don't want or need an index and it can actually hurt performance. The reason being is that it takes I/O (i.e. time) to read an index and then more I/O and time to retrieve the records associated with the matched rows. An exception being when you only query the columns contained within the index.
In your example you are retrieving all the columns and with only 22 rows and it may be faster to just do a table scan and sort those instead of using the index. The optimizer may/should be doing this and ignoring the index. If that is the case, then the index is just taking up space with no benefit. If your "categories" table is accessed often, you may want to consider pinning it into memory so the db server keeps it accessible without having to goto the disk all the time.
When adding indexes you need to balance out disk space, query performance, and the performance of updating and inserting into the tables. You can get away with more indexes on tables that are static and don't change much as opposed to tables with millions of updates a day. You'll start feeling the affects of index maintenance at that point. What is acceptable in your environment though is and can only be determined by you and your organization.
When doing your analysis, be sure to generate/update your table and index statistics so that you can be assured of accurate calculations.
As a general rule, you should have indexes on all primary keys (you don't have a choice in that), all foreign keys, and any other fields you commonly use to fetch rows.
For example, if I commonly look up users by username, I would have that indexed, even if user ID was the primary key.
How many indexes depends entirely on the queries your running, what kinds of joins are being done (if any), the kind of data stored in the table and how big the tables are (as well as many other factors). There's really no exact science to it. The greatest tool in your arsenal for figuring out how to optimize a query is explain. Using explain you can find out what kind of joins are being down, what possible keys could be used and which key (if any) was used as well as how many rows were examined for each table in the join.
Using this information you can decide how to key your tables and/or modify your queries to make them more efficient. The syntax for explain is very simple.
EXPLAIN SELECT * FROM `categories` ORDER BY `orderid` ASC;
Note, explain does not actually run the query. So if you're using this to debug a query that takes 5 minutes to run, explain will still be very fast.
You do need to be careful when adding indexes though as they do cause inserts and updates to go slower and on very large tables this performance hit can become noticeable. Especially if that same table is used for a lot of reads. While adding a lot of indexes generally won't kill the performance of a query, you should still only add them as yo
Also keep in mind that MySQL will use a maximum of one index per select statement (although if you are using a join, it can also use one for each join). So indexing just because is a waste of disk space and will slow the database down on writes. If you commonly use a where statement on two columns, do one index containing both of those columns, it will be significantly faster than indexing just one alone.
An index can speed up a SELECT query, but it will slow down INSERT/UPDATE/DELETE queries because they need to update the index as well, not just the row.
This is just personal opinion (I've got no facts to back it up), but I think that if there is a query that is taking a long time and an index would speed it up - go for it! "Too many" indexes would be if you added indexes that didn't do any good (e.g. there were no queries it would speed up). For example, a silly thing to do would be to place an index on every column "just because".
There's no magic number for the "best" number of indexes. The basic rule is this: add indexes for queries that are used often and/or need to run quickly.
Having "too many" indexes shouldn't slow down queries, but it each index added adds a small amount of time to add/update items in the db (since it modifies the indices as well), and a small amount of space. However, if you're just adding indexes as required, this is probably not a big concern.

What is the optimal amount of data for a table?

How much data should be in a table so that reading is optimal? Assuming that I have 3 fields varchar(25). This is in MySQL.
I would suggest that you consider the following in optimizing your database design:
Consider what you want to accomplish with the database. Will you be performing a lot of inserts to a single table at very high rates? Or will you be performing reporting and analytical functions with the data?
Once you've determined the purpose of the database, define what data you need to store to perform whatever functions are necessary.
Normalize till it hurts. If you're performing transaction processing (the most common function for a database) then you'll want a highly normalized database structure. If you're performing analytical functions, then you'll want a more denormalized structure that doesn't have to rely on joins to generate report results.
Typically, if you've really normalized the structure till it hurts then you need to take your normalization back a step or two to have a data structure that will be both normalized and functional.
A normalized database is mostly pointless if you fail to use keys. Make certain that each table has a primary key defined. Don't use surrogate keys just cause its what you always see. Consider what natural keys might exist in any given table. Once you are certain that you have the right primary key for each table, then you need to define your foreign key references. Establishing explicit foreign key relationships rather than relying on implicit definition will give you a performance boost, provide integrity for your data, and self-document the database structure.
Look for other indexes that exist within your tables. Do you have a column or set of columns that you will search against frequently like a username and password field? Indexes can be on a single column or multiple columns so think about how you'll be querying for data and create indexes as necessary for values you'll query against.
Number of rows should not matter. Make sure the fields your searching on are indexed properly. If you only have 3 varchar(25) fields, then you probably need to add a primary key that is not a varchar.
Agree that you should ensure that your data is properly indexed.
Apart from that, if you are worried about table size, you can always implement some type of data archival strategy to later down the line.
Don't worry too much about this until you see problems cropping up, and don't optimise prematurely.
For optimal reading you should have an index. A table exists to hold the rows it was designed to contain. As the number of rows increases, the value of the index comes into play and reading remains brisk.
Phrased as such I don't know how to answer this question. An idexed table of 100,000 records is faster than an unindexed table of 1,000.
What are your requirements? How much data do you have? Once you know the answer to these questions you can make decisions about indexing and/or partitioning.
This is a very loose question, so a very loose answer :-)
In general if you do the basics - reasonable normalization, a sensible primary key and run-of-the-mill queries - then on today's hardware you'll get away with most things on a small to medium sized database - i.e. one with the largest table having less than 50,000 records.
However once you get past the 50k - 100k rows, which roughly corresponds to the point when the rdbms is likely to be memory constrained - then unless you have your access paths set up correctly (i.e. indexes) then performance will start to fall off catastrophically. That is in the mathematical sense - in such scenario's it's not unusual to see performance deteriorate by an order of magnitude or two for a doubling in table size.
Obviously therefore the critical table size at which you need to pay attention will vary depending upon row size, machine memory, activity and other environmental issues, so there is no single answer, but it is well to be aware that performance generally does not degrade gracefully with table size and plan accordingly.
I have to disagree with Cruachan about "50k - 100k rows .... roughly correspond(ing) to the point when the rdbms is likely to be memory constrained". This blanket statement is just misleading without two additional data: approx. size of the row, and available memory. I'm currently developing a database to find the longest common subsequence (a la bio-informatics) of lines within source code files, and reached millions of rows in one table, even with a VARCHAR field of close to 1000, before it became memory constrained. So, with proper indexing, and sufficient RAM (a Gig or two), as regards the original question, with rows of 75 bytes at most, there is no reason why the proposed table couldn't hold tens of millions of records.
The proper amount of data is a function of your application, not of the database. There are very few cases where a MySQL problem is solved by breaking a table into multiple subtables, if that's the intent of your question.
If you have a particular situation where queries are slow, it would probably be more useful to discuss how to improve that situation by modifying query or the table design.