AssertionError when running U-Net script - deep-learning

This is a continuation of this problem. While I ironed out the problems I still get another issue. Would anyone be able to help me in this regards?
Looks like the predicted mask and actual mask have different sizes?
The output code is below:
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
/tmp/ipykernel_18/459131192.py in <module>
25 with torch.set_grad_enabled(phase == "train"):
26 y_pred = unet(x)
---> 27 loss = dsc_loss(y_pred, y_true)
28 running_loss += loss.item()
29
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1109 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110 return forward_call(*input, **kwargs)
1111 # Do not call functions when jit is used
1112 full_backward_hooks, non_full_backward_hooks = [], []
/tmp/ipykernel_18/3969884729.py in forward(self, y_pred, y_true)
6
7 def forward(self, y_pred, y_true):
----> 8 assert y_pred.size() == y_true.size()
9 y_pred = y_pred[:, 0].contiguous().view(-1)
10 y_true = y_true[:, 0].contiguous().view(-1)
AssertionError:
The below is the U-Net model. Please have a look.
unet_network.py:
#Unet
#https://github.com/mateuszbuda/brain-segmentation-pytorch
from collections import OrderedDict
import torch
import torch.nn as nn
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=1, init_features=8):
super(UNet, self).__init__()
features = init_features
self.encoder1 = UNet._block(in_channels, features, name="enc1")
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.encoder2 = UNet._block(features, features * 2, name="enc2")
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.encoder3 = UNet._block(features * 2, features * 4, name="enc3")
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.encoder4 = UNet._block(features * 4, features * 8, name="enc4")
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.bottleneck = UNet._block(features * 8, features * 16, name="bottleneck")
self.upconv4 = nn.ConvTranspose2d(
features * 16, features * 8, kernel_size=2, stride=2
)
self.decoder4 = UNet._block((features * 8) * 2, features * 8, name="dec4")
self.upconv3 = nn.ConvTranspose2d(
features * 8, features * 4, kernel_size=2, stride=2
)
self.decoder3 = UNet._block((features * 4) * 2, features * 4, name="dec3")
self.upconv2 = nn.ConvTranspose2d(
features * 4, features * 2, kernel_size=2, stride=2
)
self.decoder2 = UNet._block((features * 2) * 2, features * 2, name="dec2")
self.upconv1 = nn.ConvTranspose2d(
features * 2, features, kernel_size=2, stride=2
)
self.decoder1 = UNet._block(features * 2, features, name="dec1")
self.conv = nn.Conv2d(
in_channels=features, out_channels=out_channels, kernel_size=1
)
def forward(self, x):
enc1 = self.encoder1(x)
enc2 = self.encoder2(self.pool1(enc1))
enc3 = self.encoder3(self.pool2(enc2))
enc4 = self.encoder4(self.pool3(enc3))
bottleneck = self.bottleneck(self.pool4(enc4))
dec4 = self.upconv4(bottleneck)
dec4 = torch.cat((dec4, enc4), dim=1)
dec4 = self.decoder4(dec4)
dec3 = self.upconv3(dec4)
dec3 = torch.cat((dec3, enc3), dim=1)
dec3 = self.decoder3(dec3)
dec2 = self.upconv2(dec3)
dec2 = torch.cat((dec2, enc2), dim=1)
dec2 = self.decoder2(dec2)
dec1 = self.upconv1(dec2)
dec1 = torch.cat((dec1, enc1), dim=1)
dec1 = self.decoder1(dec1)
return torch.sigmoid(self.conv(dec1))
#staticmethod
def _block(in_channels, features, name):
return nn.Sequential(
OrderedDict(
[
(
name + "conv1",
nn.Conv2d(
in_channels=in_channels,
out_channels=features,
kernel_size=3,
padding=1,
bias=False,
),
),
(name + "norm1", nn.BatchNorm2d(num_features=features)),
(name + "relu1", nn.ReLU(inplace=True)),
(
name + "conv2",
nn.Conv2d(
in_channels=features,
out_channels=features,
kernel_size=3,
padding=1,
bias=False,
),
),
(name + "norm2", nn.BatchNorm2d(num_features=features)),
(name + "relu2", nn.ReLU(inplace=True)),
]
)
)
Thanks & Best Regards
Schroter Michael

Your error stems from the difference in number of channels between the prediction (pred=torch.Size([5, 1, 512, 512])) and the target (y_true=torch.Size([5, 3, 512, 512])).
For a target with 3 channels, you need your pred to have three channels as well. That is, you need to configure your UNet to have out_channels=3 instead of the default of 1.

Related

why my multi-output regression using pytorch only optimize one output?

I want to predict three outputs, the model is as follows. the features of input is 9, output is 3.
class DNN(nn.Module):
def __init__(self, n_features):
self.n_features = n_features
super(DNN, self).__init__()
self.inlayer1 = nn.Linear(self.n_features, 16)
self.layer2 = nn.Linear(16, 32)
self.layer3 = nn.Linear(32, 64)
self.layer4 = nn.Linear(64, 128)
self.layer5 = nn.Linear(128, 256)
self.layer6 = nn.Linear(256, 256)
self.layer7 = nn.Linear(256, 128)
self.layer8 = nn.Linear(128, 64)
self.layer9 = nn.Linear(64, 32)
self.layer10 = nn.Linear(32, 16)
self.outlayer = nn.Linear(16, 3)
def forward(self, x):
x = F.elu(self.inlayer1(x))
x = F.elu(self.layer2(x))
x = F.elu(self.layer3(x))
x = F.elu(self.layer4(x))
x = F.elu(self.layer5(x))
x = F.elu(self.layer6(x))
x = F.elu(self.layer7(x))
x = F.elu(self.layer8(x))
x = F.elu(self.layer9(x))
x = F.elu(self.layer10(x))
out = self.outlayer(x)
return out
The train code
def train(net, train_features, train_labels, test_features, test_labels,
num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
optimizer = torch.optim.Adam(net.parameters(),
lr = learning_rate,
weight_decay = weight_decay)
for epoch in range(num_epochs):
for X, y in train_iter:
optimizer.zero_grad()
out = net(X) ##out.shape is (100 samples, 3 labels)
loss = MSEloss(out, y)
loss.backward()
optimizer.step()
train_ls.append(MSEloss(net(train_features), train_labels).item())
if test_labels is not None:
test_ls.append(MSEloss(net(test_features), test_labels).item())
return train_ls, test_ls
after running the model, the below result is incorrect, but i don't know where is the bug? It seems that only the first col label is right. Should i change my method of calculating loss?
the below is the result.
the R2 and MSE metrics for three outputs
I tried to calculate the three outputs(out1, out2, out3) separately by change the number of output neurons to 1, then calculate the weighted loss, but it didn't work, even all three outputs are not close to the real label.

Keras Tuner on autoencoder - Add condition : first hidden layer units greater than or equal next hidden layer units

I want to use Keras-tuner to tune an autoencoder hyperparameters.
It is a symetric AE with two layers. I want the number of units in the first layer always greater than or equal the units in the second layer. But I don't know how implement it with keras-tuner. If someone can help, it would be very great. Thank you in advance.
class DAE(tf.keras.Model):
'''
A DAE model
'''
def __init__(self, hp, **kwargs):
'''
DAE instantiation
args :
hp : Tuner
input_dim : input dimension
return:
None
'''
super(DAE, self).__init__(**kwargs)
input_dim = 15
latent_dim = hp.Choice("latent_space", [2,4,8])
units_0 = hp.Choice("units_0", [8, 16, 32, 64])
units_1 = hp.Choice("units_1", [8, 16, 32, 64])
for i in [8, 16, 32, 64]:
with hp.conditional_scope("units_0", [i]):
if units_0 == i:
......? # units_1 should be <= i
dropout = hp.Choice("dropout_rate", [0.1, 0.2, 0.3, 0.4, 0.5])
inputs = tf.keras.Input(shape = (input_dim,))
x = layers.Dense(units_0, activation="relu")(inputs)
x = layers.Dropout(dropout)(x)
x = layers.Dense(units_1, activation="relu")(x)
x = layers.Dropout(dropout)(x)
z = layers.Dense(latent_dim)(x)
self.encoder = tf.keras.Model(inputs, z, name="encoder")
inputs = tf.keras.Input(shape=(latent_dim,))
x = layers.Dense(units_1, activation="relu")(inputs)
x = layers.Dropout(dropout)(x)
x = layers.Dense(units_0, activation="relu")(x)
x = layers.Dropout(dropout)(x)
outputs = layers.Dense(input_dim, activation="linear")(x)
self.decoder = tf.keras.Model(inputs, outputs, name="decoder")```
See above my code. It's a denoising autoencoder class
I found the solution. We need to create differents units_1 for for each units_O values
class DAE(tf.keras.Model):
'''
A DAE model
'''
def __init__(self, hp, training=None, **kwargs):
'''
DAE instantiation
args :
hp : Tuner
input_dim : input dimension
return:
None
'''
super(DAE, self).__init__(**kwargs)
self.input_dim = 15
l_units = [16, 32, 64, 128]
latent_dim = hp.Choice("latent_space", [2,4,8])
units_0 = hp.Choice("units_0", l_units)
dropout_0 = hp.Choice("dropout_rate_0", [0.1, 0.2, 0.3, 0.4, 0.5])
dropout_1 = hp.Choice("dropout_rate_1", [0.1, 0.2, 0.3, 0.4, 0.5])
for i in l_units:
name = "units_1_%d" % i # generates unique name for each hp.Int object
with hp.conditional_scope("units_0", [i]):
if units_0 == i:
locals()[name] = hp.Int(name, min_value = 8, max_value = i, step = 2, sampling = "log" )
inputs = tf.keras.Input(shape = (self.input_dim,))
x = layers.Dense(units_0, activation="relu")(inputs)
x = layers.Dropout(dropout_0)(x, training=training)
x = layers.Dense(locals()[name], activation="relu")(x)
x = layers.Dropout(dropout_1)(x, training=training)
z = layers.Dense(latent_dim)(x)
self.encoder = tf.keras.Model(inputs, z, name="encoder")
inputs = tf.keras.Input(shape=(latent_dim,))
x = layers.Dense(locals()[name], activation="relu")(inputs)
x = layers.Dropout(dropout_1)(x, training=training)
x = layers.Dense(units_0, activation="relu")(x)
x = layers.Dropout(dropout_0)(x, training=training)
outputs = layers.Dense(self.input_dim, activation="linear")(x)
self.decoder = tf.keras.Model(inputs, outputs, name="decoder")

U-Net with Pre-Trained ResNet throws dimension error must match

I have an RGB image of mask for Segmentation of dimensions 900x600 (width, height)
My U-Net code is the ff. I do not really want to resize the output too much it is fine if it is resized without losing much of the aspect ratio.
import torch
import torch.nn as nn
from torchvision import models
def convrelu(in_channels, out_channels, kernel, padding):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel, padding=padding),
nn.ReLU(inplace=True)
)
class ResNetUNet(nn.Module):
def __init__(self, n_class=1):
super().__init__()
self.base_model = models.resnet18(pretrained=True)
self.base_layers = list(self.base_model.children())
self.layer0 = nn.Sequential(*self.base_layers[:3]) # size=(N, 64, x.H/2, x.W/2)
self.layer0_1x1 = convrelu(64, 64, 1, 0)
self.layer1 = nn.Sequential(*self.base_layers[3:5]) # size=(N, 64, x.H/4, x.W/4)
self.layer1_1x1 = convrelu(64, 64, 1, 0)
self.layer2 = self.base_layers[5] # size=(N, 128, x.H/8, x.W/8)
self.layer2_1x1 = convrelu(128, 128, 1, 0)
self.layer3 = self.base_layers[6] # size=(N, 256, x.H/16, x.W/16)
self.layer3_1x1 = convrelu(256, 256, 1, 0)
self.layer4 = self.base_layers[7] # size=(N, 512, x.H/32, x.W/32)
self.layer4_1x1 = convrelu(512, 512, 1, 0)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv_up3 = convrelu(256 + 512, 512, 3, 1)
self.conv_up2 = convrelu(128 + 512, 256, 3, 1)
self.conv_up1 = convrelu(64 + 256, 256, 3, 1)
self.conv_up0 = convrelu(64 + 256, 128, 3, 1)
self.conv_original_size0 = convrelu(3, 64, 3, 1)
self.conv_original_size1 = convrelu(64, 64, 3, 1)
self.conv_original_size2 = convrelu(64 + 128, 64, 3, 1)
self.conv_last = nn.Conv2d(64, n_class, 1)
def forward(self, input):
x_original = self.conv_original_size0(input)
x_original = self.conv_original_size1(x_original)
layer0 = self.layer0(input)
layer1 = self.layer1(layer0)
layer2 = self.layer2(layer1)
layer3 = self.layer3(layer2)
layer4 = self.layer4(layer3)
layer4 = self.layer4_1x1(layer4)
x = self.upsample(layer4)
layer3 = self.layer3_1x1(layer3)
x = torch.cat([x, layer3], dim=1)
x = self.conv_up3(x)
x = self.upsample(x)
layer2 = self.layer2_1x1(layer2)
x = torch.cat([x, layer2], dim=1)
x = self.conv_up2(x)
x = self.upsample(x)
layer1 = self.layer1_1x1(layer1)
x = torch.cat([x, layer1], dim=1)
x = self.conv_up1(x)
x = self.upsample(x)
layer0 = self.layer0_1x1(layer0)
x = torch.cat([x, layer0], dim=1)
x = self.conv_up0(x)
x = self.upsample(x)
x = torch.cat([x, x_original], dim=1)
x = self.conv_original_size2(x)
out = self.conv_last(x)
return out
for this command
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ResNetUNet()
model = model.to(device)
# check keras-like model summary using torchsummary
from torchsummary import summary
summary(model, input_size=(3, 600, 900))
it throws the error:
54 x = self.upsample(layer4)
55 layer3 = self.layer3_1x1(layer3)
---> 56 x = torch.cat([x, layer3], dim=1)
57 x = self.conv_up3(x)
58
RuntimeError: Sizes of tensors must match except in dimension 3. Got 57 and 58
Not sure what to do here. Could someone help me how to solve this?
Try this. You just need to match tensor shapes before torch.cat.
import torch
import torch.nn as nn
from torchvision import models
import torch.nn.functional as F
def match_shapes(x, y):
if x.shape[-2:] != y.shape[-2:]:
x = F.interpolate(x, y.shape[-2:], mode='nearest')
return x
def convrelu(in_channels, out_channels, kernel, padding):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel, padding=padding),
nn.ReLU(inplace=True)
)
class ResNetUNet(nn.Module):
def __init__(self, n_class=1):
super().__init__()
self.base_model = models.resnet18(pretrained=True)
self.base_layers = list(self.base_model.children())
self.layer0 = nn.Sequential(*self.base_layers[:3]) # size=(N, 64, x.H/2, x.W/2)
self.layer0_1x1 = convrelu(64, 64, 1, 0)
self.layer1 = nn.Sequential(*self.base_layers[3:5]) # size=(N, 64, x.H/4, x.W/4)
self.layer1_1x1 = convrelu(64, 64, 1, 0)
self.layer2 = self.base_layers[5] # size=(N, 128, x.H/8, x.W/8)
self.layer2_1x1 = convrelu(128, 128, 1, 0)
self.layer3 = self.base_layers[6] # size=(N, 256, x.H/16, x.W/16)
self.layer3_1x1 = convrelu(256, 256, 1, 0)
self.layer4 = self.base_layers[7] # size=(N, 512, x.H/32, x.W/32)
self.layer4_1x1 = convrelu(512, 512, 1, 0)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv_up3 = convrelu(256 + 512, 512, 3, 1)
self.conv_up2 = convrelu(128 + 512, 256, 3, 1)
self.conv_up1 = convrelu(64 + 256, 256, 3, 1)
self.conv_up0 = convrelu(64 + 256, 128, 3, 1)
self.conv_original_size0 = convrelu(3, 64, 3, 1)
self.conv_original_size1 = convrelu(64, 64, 3, 1)
self.conv_original_size2 = convrelu(64 + 128, 64, 3, 1)
self.conv_last = nn.Conv2d(64, n_class, 1)
def forward(self, input):
x_original = self.conv_original_size0(input)
x_original = self.conv_original_size1(x_original)
layer0 = self.layer0(input)
layer1 = self.layer1(layer0)
layer2 = self.layer2(layer1)
layer3 = self.layer3(layer2)
layer4 = self.layer4(layer3)
layer4 = self.layer4_1x1(layer4)
x = self.upsample(layer4)
layer3 = self.layer3_1x1(layer3)
x = match_shapes(x, layer3)
x = torch.cat([x, layer3], dim=1)
x = self.conv_up3(x)
x = self.upsample(x)
layer2 = self.layer2_1x1(layer2)
x = match_shapes(x, layer2)
x = torch.cat([x, layer2], dim=1)
x = self.conv_up2(x)
x = self.upsample(x)
layer1 = self.layer1_1x1(layer1)
x = match_shapes(x, layer1)
x = torch.cat([x, layer1], dim=1)
x = self.conv_up1(x)
x = self.upsample(x)
layer0 = self.layer0_1x1(layer0)
x = torch.cat([x, layer0], dim=1)
x = self.conv_up0(x)
x = self.upsample(x)
x = torch.cat([x, x_original], dim=1)
x = self.conv_original_size2(x)
out = self.conv_last(x)
return out
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ResNetUNet()
model = model.to(device)
# check keras-like model summary using torchsummary
from torchsummary import summary
summary(model, input_size=(3, 600, 900))

Pytorch-Optimzer doesn't update parameters

I made my custom model, AlexNetQIL (Alexnet with QIL layer)
'QIL' means quantization intervals learning
I trained my model and loss value didn't decrease at all and I found out parameters in my model were not updated at all because of QIL layer I added
I attached my codes AlexNetQil and qil
please someone let me know what's the problem in my codes
AlexNetQIL
import torch
import torch.nn as nn
from qil import *
class AlexNetQIL(nn.Module):
#def __init__(self, num_classes=1000): for imagenet
def __init__(self, num_classes=10): # for cifar-10
super(AlexNetQIL, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU(inplace=True)
self.maxpool1 = nn.MaxPool2d(kernel_size=2)
self.qil2 = Qil()
self.conv2 = nn.Conv2d(64, 192, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(192)
self.relu2 = nn.ReLU(inplace=True)
self.maxpool2 = nn.MaxPool2d(kernel_size=2)
self.qil3 = Qil()
self.conv3 = nn.Conv2d(192, 384, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(384)
self.relu3 = nn.ReLU(inplace=True)
self.qil4 = Qil()
self.conv4 = nn.Conv2d(384, 256, kernel_size=3, padding=1)
self.bn4 = nn.BatchNorm2d(256)
self.relu4 = nn.ReLU(inplace=True)
self.qil5 = Qil()
self.conv5 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.bn5 = nn.BatchNorm2d(256)
self.relu5 = nn.ReLU(inplace=True)
self.maxpool5 = nn.MaxPool2d(kernel_size=2)
self.classifier = nn.Sequential(
nn.Linear(256 * 2 * 2, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self,x,inference = False):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu2(x)
x = self.maxpool1(x)
x,self.conv2.weight = self.qil2(x,self.conv2.weight,inference ) # if I remove this line, No problem
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.maxpool2(x)
x,self.conv3.weight = self.qil3(x,self.conv3.weight,inference ) # if I remove this line, No problem
x = self.conv3(x)
x = self.bn3(x)
x = self.relu3(x)
x,self.conv4.weight = self.qil4(x,self.conv4.weight,inference ) # if I remove this line, No problem
x = self.conv4(x)
x = self.bn4(x)
x = self.relu4(x)
x,self.conv5.weight = self.qil5(x,self.conv5.weight,inference ) # if I remove this line, No problem
x = self.conv5(x)
x = self.bn5(x)
x = self.relu5(x)
x = self.maxpool5(x)
x = x.view(x.size(0),256 * 2 * 2)
x = self.classifier(x)
return x
QIL
forward
quantize weights and input activation with 2 steps
transformer(params) -> discretizer(params)
import torch
import torch.nn as nn
import numpy as np
import copy
#Qil (Quantize intervals learning)
class Qil(nn.Module):
discretization_level = 32
def __init__(self):
super(Qil,self).__init__()
self.cw = nn.Parameter(torch.rand(1)) # I have to train this interval parameter
self.dw = nn.Parameter(torch.rand(1)) # I have to train this interval parameter
self.cx = nn.Parameter(torch.rand(1)) # I have to train this interval parameter
self.dx = nn.Parameter(torch.rand(1)) # I have to train this interval parameter
self.gamma = nn.Parameter(torch.tensor(1.0)) # I have to train this transformer parameter
self.a = Qil.discretization_level
def forward(self,x,weights,Inference = False):
if not Inference:
weights = self.transfomer_weights(weights)
weights = self.discretizer(weights)
x = self.transfomer_activation(x)
x = self.discretizer(x)
return torch.nn.Parameter(x), torch.nn.Parameter(weights)
def transfomer_weights(self,weights):
device = weights.device
aw,bw = (0.5 / self.dw) , (-0.5*self.cw / self.dw + 0.5)
weights = torch.where( abs(weights) < self.cw - self.dw,
torch.tensor(0.).to(device),weights)
weights = torch.where( abs(weights) > self.cw + self.dw,
weights.sign(), weights)
weights = torch.where( (abs(weights) >= self.cw - self.dw) & (abs(weights) <= self.cw + self.dw),
(aw*abs(weights) + bw)**self.gamma * weights.sign() , weights)
return weights
def transfomer_activation(self,x):
device = x.device
ax,bx = (0.5 / self.dx) , (-0.5*self.cx / self.dx + 0.5)
x = torch.where(x < self.cx - self.dx,
torch.tensor(0.).to(device),x)
x = torch.where(x > self.cx + self.dx,
torch.tensor(1.0).to(device),x)
x = torch.where( (abs(x) >= self.cx - self.dx) & (abs(x) <= self.cx + self.dx),
ax*abs(x) + bx, x)
return x
def discretizer(self,tensor):
q_D = pow(2, Qil.discretization_level)
tensor = torch.round(tensor * q_D) / q_D
return tensor

Pytorch network parameter calculation

Can someone tell me please about how the network parameter (10) is calculated? Thanks in advance.
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(x.size()[0], -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
print(net)
print(len(list(net.parameters())))
Output:
Net(
(conv1): Conv2d (1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d (6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120)
(fc2): Linear(in_features=120, out_features=84)
(fc3): Linear(in_features=84, out_features=10)
)
10
Best,
Zack
Most layer modules in PyTorch (e.g. Linear, Conv2d, etc.) group parameters into specific categories, such as weights and biases. Each of the five layer instances in your network has a "weight" and a "bias" parameter. This is why "10" is printed.
Of course, all of these "weight" and "bias" fields contain many parameters. For example, your first fully connected layer self.fc1 contains 16 * 5 * 5 * 120 = 48000 parameters. So len(params) doesn't tell you the number of parameters in the network--it gives you just the total number of "groupings" of parameters in the network.
Since Bill already answered why "10" is printed, I am just sharing a code snippet which you can use to find out the number of parameters associated with each layer in your network.
def count_parameters(model):
total_param = 0
for name, param in model.named_parameters():
if param.requires_grad:
num_param = numpy.prod(param.size())
if param.dim() > 1:
print(name, ':', 'x'.join(str(x) for x in list(param.size())), '=', num_param)
else:
print(name, ':', num_param)
total_param += num_param
return total_param
Use the above function as follows.
print('number of trainable parameters =', count_parameters(net))
Output:
conv1.weight : 6x1x5x5 = 150
conv1.bias : 6
conv2.weight : 16x6x5x5 = 2400
conv2.bias : 16
fc1.weight : 120x400 = 48000
fc1.bias : 120
fc2.weight : 84x120 = 10080
fc2.bias : 84
fc3.weight : 10x84 = 840
fc3.bias : 10
number of trainable parameters = 61706