I have been looking for certain features in the HuggingFace transformer Trainer object (in particular Seq2SeqTrainer) and would like to know whether they exist and if so, how to implement them, or whether I would have to write my own training loop to enable them.
I am looking to apply Curriculum Learning to my training strategy, as well as evaluating the model at regular intervals, and therefore would like to enable the following
choose in which order the model sees training samples at each epoch (it seems that the data passed onto the train_dataset argument are automatically shuffled by some internal code, and even if I managed to stop that, I would still need to pass differently ordered data at different epochs, as I may want to start training the model from easy samples for a few epochs, and then pass a random shuffle of all data for later epochs)
run custom evaluation at integer multiples of a fix number of steps. The standard compute_metrics argument of the Trainer takes a function to which the predictions and labels are passed* and the user can decide how to generate the metrics given these. However I'd like a finer level of control, for example changing the maximum sequence length for the tokenizer when doing the evaluation, as opposed to when doing training, which would require me including some explicit evaluation code inside compute_metrics which needs to access the trained model and the data from disk.
Can these two points be achieved by using the Trainer on a multi-GPU machine, or would I have to write my own training loop?
*The function often looks something like this and I'm not sure it would work with the Trainer if it doesn't have this configuration
def compute_metrics(eval_pred):
predictions, labels = eval_pred
...
You can pass custom functions to compute metrics in the training arguments
Related
I am conducting the ordinal regression model using the "clmm" function of the package "ordinal". As the tutorial said, we should use the "nominal_test" and "scale_test" in the "clm" function to check the assumption.
Like the result of the example in this tutorial, unfortunately, the p-values of some predictors are significant in "nominal_test" and "scale_test" in my case. According to Fabian Bross (2019, www.fabianbross.de/mixedmodels.pdf.), "if the proportional odds assumption fails, the results of the model will not be reliable."
Then I also tried to check the assumption by the "brant" function in the package "brant." Again, some predictors are significant, which means my model is not reliable.
As I have to fit the ordinal regression model with random factors, it is difficult for me to give the "clmm" model up. I am unsure about the importance of checking assumptions and what I should do next, as the model failed to check the assumption.
I have a confusion about the way the LSTM networks work when forecasting with an horizon that is not finite but I'm rather searching for a prediction in whatever time in future. In physical terms I would call it the evolution of the system.
Suppose I have a time series $y(t)$ (output) I want to forecast, and some external inputs $u_1(t), u_2(t),\cdots u_N(t)$ on which the series $y(t)$ depends.
It's common to use the lagged value of the output $y(t)$ as input for the network, such that I schematically have something like (let's consider for simplicity just lag 1 for the output and no lag for the external input):
[y(t-1), u_1(t), u_2(t),\cdots u_N(t)] \to y(t)
In this way of thinking the network, when one wants to do recursive forecast it is forced to use the predicted value at the previous step as input for the next step. In this way we have an effect of propagation of error that makes the long term forecast badly behaving.
Now, my confusion is, I'm thinking as a RNN as a kind of an (simple version) implementation of a state space model where I have the inputs, my output and one or more state variable responsible for the memory of the system. These variables are hidden and not observed.
So now the question, if there is this kind of variable taking already into account previous states of the system why would I need to use the lagged output value as input of my network/model ?
Getting rid of this does my long term forecast would be better, since I'm not expecting anymore the propagation of the error of the forecasted output. (I guess there will be anyway an error in the internal state propagating)
Thanks !
Please see DeepAR - a LSTM forecaster more than one step into the future.
The main contributions of the paper are twofold: (1) we propose an RNN
architecture for probabilistic forecasting, incorporating a negative
Binomial likelihood for count data as well as special treatment for
the case when the magnitudes of the time series vary widely; (2) we
demonstrate empirically on several real-world data sets that this
model produces accurate probabilistic forecasts across a range of
input characteristics, thus showing that modern deep learning-based
approaches can effective address the probabilistic forecasting
problem, which is in contrast to common belief in the field and the
mixed results
In this paper, they forecast multiple steps into the future, to negate exactly what you state here which is the error propagation.
Skipping several steps allows to get more accurate predictions, further into the future.
One more thing done in this paper is predicting percentiles, and interpolating, rather than predicting the value directly. This adds stability, and an error assessment.
Disclaimer - I read an older version of this paper.
I am currently designing a artificial neural network for a problem with a decay curve.
For example, building a model for predicting the durability of the some material. It may includes the environment condition like temperature and humidity.
However, it is not adequate to predict the durability of the material. For such a problem, I think it is better to using the output durability of previous time slots as one of the current input to predict the durability of next time slot.
Moreover, I do not know how to train a model which feed the output back to input as one of the input columns has only the initial value before training.
For this case,
Method 1 (fail)
I have tried to fill the predicted output durability of current row to the input durability of next row. Nevertheless, it will prevent the model from "loss.backward()" so we cannot compute and update the gradient if we do so. The gradient function used was "CopySlices" instead of "MSELoss" when I copied the predicted output to the next row of the input data.
Feed output to input
gradient function -copy-
Method 2 "fill the input column with expected output"
In this method, I fill the blank input column with expected output (row-1) before training the model. Filling the input column with expected output of previous row is only done for training. For real prediction, I will feed the predicted output to the input. In this case, I am successful to train a overfitting model with MSELoss.
Moreover, I do not believe it is a right method as it uses the expected output as the input no matter how bad it predict. I strongly believed that it is not a right method.
Therefore, I want to ask whether it is possible to feed output to input in linear regression problem using artificial neural network.
I apologize for uploading no code here as I am not convenient to upload the full code here. It may be confidential.
It looks like you need an RNN (recurrent neural network). This tutorial is pretty helpful for understanding an RNN: https://colah.github.io/posts/2015-08-Understanding-LSTMs/.
I am currently looking into multi-labeling classification and I have some questions (and I couldn't find clear answers).
For the sake of clarity let's take an example : I want to classify images of vehicles (car, bus, truck, ...) and their make (Audi, Volkswagen, Ferrari, ...).
So I thought about training two independant CNN (one for the "type" classification and one fore the "make" classifiaction) but I thought it might be possible to train only one CNN on all the classes.
I read that people tend to use sigmoid function instead of softmax to do that. I understand that sigmoid does not sum up to 1 like softmax does but I dont understand in what doing that enables to do multi-labeling classification ?
My second question is : Is it possible to take into account that some classes are completly independant ?
Thridly, in term of performances (accuracy and time to give the classification for a new image), isn't training two independant better ?
Thank you for those who could give my some answers or some ideas :)
Softmax is a special output function; it forces the output vector to have a single large value. Now, training neural networks works by calculating an output vector, comparing that to a target vector, and back-propagating the error. There's no reason to restrict your target vector to a single large value, and for multi-labeling you'd use a 1.0 target for every label that applies. But in that case, using a softmax for the output layer will cause unintended differences between output and target, differences that are then back-propagated.
For the second part: you define the target vectors; you can encode any sort of dependency you like there.
Finally, no - a combined network performs better than the two halves would do independently. You'd only run two networks in parallel when there's a difference in network layout, e.g. a regular NN and CNN in parallel might be viable.
I am new to keras and despite reading the documentation and the examples folder in keras, I'm still struggling with how to fit everything together.
In particular, I want to start with a simple task: I have a sequence of tokens, where each token has exactly one label. I have a lot training data like this - practically infinite, as I can generate more (token, label) training pairs as needed.
I want to build a network to predict labels given tokens. The number of tokens must always be the same as the number of labels (one token = one label).
And I want this to be based on all surrounding tokens, say within the same line or sentence or window -- not just on the preceding tokens.
How far I got on my own:
created the training numpy vectors, where I converted each sentence into a token-vector and label-vector (of same length), using a token-to-int and label-to-int mappings
wrote a model using categorical_crossentropy and one LSTM layer, based on https://github.com/fchollet/keras/blob/master/examples/lstm_text_generation.py.
Now struggling with:
All the input_dim and input_shape parameters... since each sentence has a different length (different number of tokens and labels in it), what should I put as input_dim for the input layer?
How to tell the network to use the entire token sentence for prediction, not just one token? How to predict a whole sequence of labels given a sequence of tokens, rather than just label based on previous tokens?
Does splitting the text into sentences or windows make any sense? Or can I just pass a vector for the entire text as a single sequence? What is a "sequence"?
What are "time slices" and "time steps"? The documentation keeps mentioning that and I have no idea how that relates to my problem. What is "time" in keras?
Basically I have trouble connecting the concepts from the documentation like "time" or "sequence" to my problem. Issues like Keras#40 didn't make me any wiser.
Pointing to relevant examples on the web or code samples would be much appreciated. Not looking for academic articles.
Thanks!
If you have sequences of different length you can either pad them or use a stateful RNN implementation in which the activations are saved between batches. The former is the easiest and most used.
If you want to use future information when using RNNs you want to use a bidirectional model where you concatenate two RNN's moving in opposite directions. RNN will use a representation of all previous information when e.g. predicting.
If you have very long sentences it might be useful to sample a random sub-sequence and train on that. Fx 100 characters. This also helps with overfitting.
Time steps are your tokens. A sentence is a sequence of characters/tokens.
I've written an example of how I understand your problem but it's not tested so it might not run. Instead of using integers to represent your data I suggest one-hot encoding if it is possible and then use binary_crossentropy instead of mse.
from keras.models import Model
from keras.layers import Input, LSTM, TimeDistributed
from keras.preprocessing import sequence
# Make sure all sequences are of same length
X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
# The input shape is your sequence length and your token embedding size (which is 1)
inputs = Input(shape=(maxlen, 1))
# Build a bidirectional RNN
lstm_forward = LSTM(128)(inputs)
lstm_backward = LSTM(128, go_backwards=True)(inputs)
bidirectional_lstm = merge([lstm_forward, lstm_backward], mode='concat', concat_axis=2)
# Output each timestep into a fully connected layer with linear
# output to map to an integer
sequence_output = TimeDistributed(Dense(1, activation='linear'))(bidirectional_lstm)
# Dense(n_classes, activation='sigmoid') if you want to classify
model = Model(inputs, sequence_output)
model.compile('adam', 'mse')
model.fit(X_train, y_train)