Best net not found using deep.copy and stochastic gradient descent - deep-learning

In the following code, I am using a Neural Network (net) to minimize the expectation of a complex stochastic function (complex_function).
loss = torch.tensor(0., requires_grad=True)
params = list(net.parameters())
optimizer = torch.optim.SGD(params, lr=learning_rate)
nb_train = 100
nb_mean = 1000
for i in range(nb_train):
for j in range(nb_mean):
value = complex_function(net)
loss = loss + value
loss = loss / nb_mean
loss.backward(retain_graph=True)
optimizer.step()
optimizer.zero_grad()
if i==0:
best_loss = loss
best_net = copy.deepcopy(net)
else:
if loss < best_loss:
best_net = copy.deepcopy(net)
best_loss = loss
return best_net
Weirdly, this code does not return the best net that I have encountered. Could someone explain me why? I suppose it is related to copy.deepcopy(net) but I do not know how...

Related

Difference between WGAN and WGAN-GP (Gradient Penalty)

I just find that in the code here:
https://github.com/NUS-Tim/Pytorch-WGAN/tree/master/models
The "generator" loss, G, between WGAN and WGAN-GP is different, for WGAN:
g_loss = self.D(fake_images)
g_loss = g_loss.mean().mean(0).view(1)
g_loss.backward(one) # !!!
g_cost = -g_loss
But for WGAN-GP:
g_loss = self.D(fake_images)
g_loss = g_loss.mean()
g_loss.backward(mone) # !!!
g_cost = -g_loss
Why one is one=1 and another is mone=-1?
You might have misread the source code, the first sample you gave is not averaging the resut of D to compute its loss but instead uses the binary cross-entropy.
To be more precise:
The first method ("GAN") uses the BCE loss to compute the loss terms for D and G. The standard GAN optimization objective for D is to minimize E_x[log(D(x))] + E_z[log(1-D(G(z)))]. Source code:
outputs = self.D(images)
d_loss_real = self.loss(outputs.flatten(), real_labels) # <- bce loss
real_score = outputs
# Compute BCELoss using fake images
fake_images = self.G(z)
outputs = self.D(fake_images)
d_loss_fake = self.loss(outputs.flatten(), fake_labels) # <- bce loss
fake_score = outputs
# Optimizie discriminator
d_loss = d_loss_real + d_loss_fake
self.D.zero_grad()
d_loss.backward()
self.d_optimizer.step()
For d_loss_real you optimize towards 1s (output is considered real), while d_loss_fake optimizes towards 0s (output is considered fake).
While the second ("WCGAN") uses the Wasserstein loss (ref) whereby we maximise for D the loss: E_x[D(x)] - E_z[D(G(z))]. Source code:
# Train discriminator
# WGAN - Training discriminator more iterations than generator
# Train with real images
d_loss_real = self.D(images)
d_loss_real = d_loss_real.mean()
d_loss_real.backward(mone)
# Train with fake images
z = self.get_torch_variable(torch.randn(self.batch_size, 100, 1, 1))
fake_images = self.G(z)
d_loss_fake = self.D(fake_images)
d_loss_fake = d_loss_fake.mean()
d_loss_fake.backward(one)
# [...]
Wasserstein_D = d_loss_real - d_loss_fake
By doing d_loss_real.backward(mone) you backpropage with a gradient of opposite sign, i.e. its's a gradient ascend, and you end up maximizing d_loss_real.
In order to Update D network:
lossD = Expectation of D(fake data) - Expectation of D(real data) + gradient penalty
lossD ↓,D(real data) ↑
so you need to add minus one to the gradient process

My training and validation loss suddenly increased in power of 3

train function
def train(model, iterator, optimizer, criterion, clip):
model.train()
epoch_loss = 0
for i, batch in enumerate(iterator):
optimizer.zero_grad()
output = model(batch.text)
loss = criterion(output, torch.unsqueeze(batch.labels, 1))
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
optimizer.step()
epoch_loss += loss.item()
return epoch_loss / len(iterator)
main_script
def main(
train_file,
test_file,
config_file,
checkpoint_path,
best_model_path
):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
with open(config_file, 'r') as j:
config = json.loads(j.read())
for k,v in config['model'].items():
v = float(v)
if v < 1.0:
config['model'][k] = float(v)
else:
config['model'][k] = int(v)
for k,v in config['training'].items():
v = float(v)
if v < 1.0:
config['training'][k] = float(v)
else:
config['training'][k] = int(v)
train_itr, val_itr, test_itr, vocab_size = data_pipeline(
train_file,
test_file,
config['training']['max_vocab'],
config['training']['min_freq'],
config['training']['batch_size'],
device
)
model = CNNNLPModel(
vocab_size,
config['model']['emb_dim'],
config['model']['hid_dim'],
config['model']['model_layer'],
config['model']['model_kernel_size'],
config['model']['model_dropout'],
device
)
optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()
num_epochs = config['training']['n_epoch']
clip = config['training']['clip']
is_best = False
best_valid_loss = float('inf')
model = model.to(device)
for epoch in tqdm(range(num_epochs)):
train_loss = train(model, train_itr, optimizer, criterion, clip)
valid_loss = evaluate(model, val_itr, criterion)
if (epoch + 1) % 2 == 0:
print("training loss {}, validation_loss{}".format(train_loss,valid_loss))
I was training a Convolution Neural Network for binary Text classification. Given a sentence, it detects its a hate speech or not. Training loss and validation loss was fine till 5 epoch after that suddenly the training loss and validation loss shot up suddenly from 0.2 to 10,000.
What could be the reason for such huge increase is loss suddenly?
Default learning rate of Adam is 0.001, which, depending on task, might be too high.
It looks like instead of converging your neural network became divergent (it left the previous ~0.2 loss minima and fell into different region).
Lowering your learning rate at some point (after 50% or 70% percent of training) would probably fix the issue.
Usually people divide the learning rate by 10 (0.0001 in your case) or by half (0.0005 in your case). Try with dividing by half and see if the issue persist, in general you would want to keep your learning rate as high as possible until divergence occurs as is probably the case here.
This is what schedulers are for (gamma specifies learning rate multiplier, might want to change that to 0.5 first).
One can think of lower learning rate phase as fine-tuning already found solution (placing weights in better region of the loss valley) and might require some patience.

Deep Q Learning - Cartpole Environment

I have a concern in understanding the Cartpole code as an example for Deep Q Learning. The DQL Agent part of the code as follow:
class DQLAgent:
def __init__(self, env):
# parameter / hyperparameter
self.state_size = env.observation_space.shape[0]
self.action_size = env.action_space.n
self.gamma = 0.95
self.learning_rate = 0.001
self.epsilon = 1 # explore
self.epsilon_decay = 0.995
self.epsilon_min = 0.01
self.memory = deque(maxlen = 1000)
self.model = self.build_model()
def build_model(self):
# neural network for deep q learning
model = Sequential()
model.add(Dense(48, input_dim = self.state_size, activation = "tanh"))
model.add(Dense(self.action_size,activation = "linear"))
model.compile(loss = "mse", optimizer = Adam(lr = self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
# storage
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
# acting: explore or exploit
if random.uniform(0,1) <= self.epsilon:
return env.action_space.sample()
else:
act_values = self.model.predict(state)
return np.argmax(act_values[0])
def replay(self, batch_size):
# training
if len(self.memory) < batch_size:
return
minibatch = random.sample(self.memory,batch_size)
for state, action, reward, next_state, done in minibatch:
if done:
target = reward
else:
target = reward + self.gamma*np.amax(self.model.predict(next_state)[0])
train_target = self.model.predict(state)
train_target[0][action] = target
self.model.fit(state,train_target, verbose = 0)
def adaptiveEGreedy(self):
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
In the training section, we found our target and train_target. So why did we set train_target[0][action] = target here?
Every predict made while learning is not correct, but thanks to error calculation and backpropagation, the predict made at the end of the network will get closer and closer, but when we make train_target[0][action] = target here the error becomes 0, and in this case, how will the learning be?
self.model.predict(state) will return a tensor of shape of (1, 2) containing the estimated Q values for each action (in cartpole the action space is {0,1}).
As you know the Q value is a measure of the expected reward.
By setting self.model.predict(state)[0][action] = target (where target is the expected sum of rewards) it is creating a target Q value on which to train the model. By then calling model.fit(state, train_target) it is using the target Q value to train said model to approximate better Q values for each state.
I don't understand why you are saying that the loss becomes 0: the target is set to the discounted sum of rewards plus the current reward
target = reward + self.gamma*np.amax(self.model.predict(next_state)[0])
while the network prediction for the highest Q value is
np.amax(self.model.predict(next_state)[0])
The loss between the target and the predicted values is what is used to train the model.
Edit - more detailed explaination
(you can ignore the [0] to the predicted values, as it is just to access the right column and unimportant in the understanding)
The target variable is set to the sum between the current reward and the estimated sum of future rewards, or the Q value. Note that this variable is called target but it is not the target of the network, but the target Q value for the chosen action.
The train_target variable is used as what you call the "dataset". It represents the target of the network.
train_target = self.model.predict(state)
train_target[0][action] = target
You can clearly see that:
train_target[<taken action>] = reward + self.gamma*np.amax(self.model.predict(next_state)[0])
train_target[<any other action>] = <prediction from the model>
the loss (mean squared error):
prediction = self.model.predict(state)
loss = (train_target - prediction)^2
For any line of the that is not the the loss is 0. For the one line that has been set the loss is
(target - prediction[action])^2
or
((reward + self.gamma*np.amax(self.model.predict(next_state)[0])) - self.model.predict(state)[0][action])^2
which is clearly different from 0.
Note that this agent is not ideal. I would strongly recommend the use of a target model instead of creating target Q values that way. Check out this answer as for why.

what should I do if my regression model stuck at a high value loss?

I'm using neural nets for a regression problem where I have 3 features and I'm trying to predict one continuous value. I noticed that my neural net start learning good but after 10 epochs it get stuck on a high loss value and could not improve anymore.
I tried to use Adam and other adaptive optimizers instead of SGD but that didn't work. I tried a complex architectures like adding layers, neurons, batch normalization and other activations etc.. and that also didn't work.
I tried to debug and try to find out if something is wrong with the implementation but when I use only 10 examples of the data my model learn fast so there are no errors. I start to increase the examples of the data and monitoring my model results as I increase the data examples. when I reach 3000 data examples my model start to get stuck on a high value loss.
I tried to increase layers, neurons and also to try other activations, batch normalization. My data are also normalized between [-1, 1], my target value is not normalized since it is regression and I'm predicting a continuous value. I also tried using keras but I've got the same result.
My real dataset have 40000 data, I don't know what should I try, I almost try all things that I know for optimization but none of them worked. I would appreciate it if someone can guide me on this. I'll post my Code but maybe it is too messy to try to understand, I'm sure there is no problem with my implementation, I'm using skorch/pytorch and some SKlearn functions:
# take all features as an Independant variable except the bearing and distance
# here when I start small the model learn good but from 3000 data points as you can see the model stuck on a high value. I mean the start loss is 15 and it start to learn good but when it reach 9 it stucks there
# and if I try to use the whole dataset for training then the loss start at 47 and start decreasing until it reach 36 and then stucks there too
X = dataset.iloc[:3000, 0:-2].reset_index(drop=True).to_numpy().astype(np.float32)
# take distance and bearing as the output values:
y = dataset.iloc[:3000, -2:].reset_index(drop=True).to_numpy().astype(np.float32)
y_bearing = y[:, 0].reshape(-1, 1)
y_distance = y[:, 1].reshape(-1, 1)
# normalize the input values
scaler = StandardScaler()
X_norm = scaler.fit_transform(X, y)
X_br_train, X_br_test, y_br_train, y_br_test = train_test_split(X_norm,
y_bearing,
test_size=0.1,
random_state=42,
shuffle=True)
X_dis_train, X_dis_test, y_dis_train, y_dis_test = train_test_split(X_norm,
y_distance,
test_size=0.1,
random_state=42,
shuffle=True)
bearing_trainset = Dataset(X_br_train, y_br_train)
bearing_testset = Dataset(X_br_test, y_br_test)
distance_trainset = Dataset(X_dis_train, y_dis_train)
distance_testset = Dataset(X_dis_test, y_dis_test)
def root_mse(y_true, y_pred):
return np.sqrt(mean_squared_error(y_true, y_pred))
class RMSELoss(nn.Module):
def __init__(self):
super().__init__()
self.mse = nn.MSELoss()
def forward(self, yhat, y):
return torch.sqrt(self.mse(yhat, y))
class AED(nn.Module):
"""custom average euclidean distance loss"""
def __init__(self):
super().__init__()
def forward(self, yhat, y):
return torch.dist(yhat, y)
def train(on_target,
hidden_units,
batch_size,
epochs,
optimizer,
lr,
regularisation_factor,
train_shuffle):
network = None
trainset = distance_trainset if on_target.lower() == 'distance' else bearing_trainset
testset = distance_testset if on_target.lower() == 'distance' else bearing_testset
print(f"shape of trainset.X = {trainset.X.shape}, shape of trainset.y = {trainset.y.shape}")
print(f"shape of testset.X = {testset.X.shape}, shape of testset.y = {testset.y.shape}")
mse = EpochScoring(scoring=mean_squared_error, lower_is_better=True, name='MSE')
r2 = EpochScoring(scoring=r2_score, lower_is_better=False, name='R2')
rmse = EpochScoring(scoring=make_scorer(root_mse), lower_is_better=True, name='RMSE')
checkpoint = Checkpoint(dirname=f'results/{on_target}/checkpoints')
train_end_checkpoint = TrainEndCheckpoint(dirname=f'results/{on_target}/checkpoints')
if on_target.lower() == 'bearing':
network = BearingNetwork(n_features=X_norm.shape[1],
n_hidden=hidden_units,
n_out=y_distance.shape[1])
elif on_target.lower() == 'distance':
network = DistanceNetwork(n_features=X_norm.shape[1],
n_hidden=hidden_units,
n_out=1)
model = NeuralNetRegressor(
module=network,
criterion=RMSELoss,
device='cpu',
batch_size=batch_size,
lr=lr,
optimizer=optim.Adam if optimizer.lower() == 'adam' else optim.SGD,
optimizer__weight_decay=regularisation_factor,
max_epochs=epochs,
iterator_train__shuffle=train_shuffle,
train_split=predefined_split(testset),
callbacks=[mse, r2, rmse, checkpoint, train_end_checkpoint]
)
print(f"{'*' * 10} start training the {on_target} model {'*' * 10}")
history = model.fit(trainset, y=None)
print(f"{'*' * 10} End Training the {on_target} Model {'*' * 10}")
if __name__ == '__main__':
args = parser.parse_args()
train(on_target=args.on_target,
hidden_units=args.hidden_units,
batch_size=args.batch_size,
epochs=args.epochs,
optimizer=args.optimizer,
lr=args.learning_rate,
regularisation_factor=args.regularisation_lambda,
train_shuffle=args.shuffle)
and this is my network declaration:
class DistanceNetwork(nn.Module):
"""separate NN for predicting distance"""
def __init__(self, n_features=5, n_hidden=16, n_out=1):
super().__init__()
self.model = nn.Sequential(
nn.Linear(n_features, n_hidden),
nn.LeakyReLU(),
nn.Linear(n_hidden, 5),
nn.LeakyReLU(),
nn.Linear(5, n_out)
)
here is the log while training:

Why model's loss is always revolving around 1 in every epoch?

During training, loss of my model is revolving around "1". It is not converging.
I tried various optimizer but it still showing the same pattern. I am using keras with tensorflow backend. What could be possible reasons? Any help or reference link will be appreciable.
here is my model:
def model_vgg19():
vgg_model = VGG19(weights="imagenet", include_top=False, input_shape=(128,128,3))
for layer in vgg_model.layers[:10]:
layer.trainable = False
intermediate_layer_outputs = get_layers_output_by_name(vgg_model, ["block1_pool", "block2_pool", "block3_pool", "block4_pool"])
convnet_output = GlobalAveragePooling2D()(vgg_model.output)
for layer_name, output in intermediate_layer_outputs.items():
output = GlobalAveragePooling2D()(output)
convnet_output = concatenate([convnet_output, output])
convnet_output = Dense(2048, activation='relu')(convnet_output)
convnet_output = Dropout(0.6)(convnet_output)
convnet_output = Dense(2048, activation='relu')(convnet_output)
convnet_output = Lambda(lambda x: K.l2_normalize(x,axis=1)(convnet_output)
final_model = Model(inputs=[vgg_model.input], outputs=convnet_output)
return final_model
model=model_vgg19()
here is my loss function:
def hinge_loss(y_true, y_pred):
y_pred = K.clip(y_pred, _EPSILON, 1.0-_EPSILON)
loss = tf.convert_to_tensor(0,dtype=tf.float32)
g = tf.constant(1.0, shape=[1], dtype=tf.float32)
for i in range(0, batch_size, 3):
try:
q_embedding = y_pred[i+0]
p_embedding = y_pred[i+1]
n_embedding = y_pred[i+2]
D_q_p = K.sqrt(K.sum((q_embedding - p_embedding)**2))
D_q_n = K.sqrt(K.sum((q_embedding - n_embedding)**2))
loss = (loss + g + D_q_p - D_q_n)
except:
continue
loss = loss/(batch_size/3)
zero = tf.constant(0.0, shape=[1], dtype=tf.float32)
return tf.maximum(loss,zero)
What is definitely a problem is that you shuffle your data and then try to learn triplets out of this.
As you can see here: https://keras.io/models/model/ model.fit shuffles your data in each epoch, making your triplet setup obsolete. Try to set the shuffle parameter to false and see what happens, there might be different errors as well.