what's the meaning of 'parameterize' in deep learning? - deep-learning

no
13
what's the meaning of 'parameterize' in deep learning? As shown in the photo, does it means the matrix 'A' can be changed by the optimization during training?

Yes, when something can be parameterized it means that gradients can be calculated.
This means that the (dE/dw) which means the derivative of Error with respect to weight can be calculated (i.e it must be differentiable) and subtracted from the model weights along with obviously a learning_rate and other params being included depending on the optimizer.
What the paper is saying is that if you make a binary matrix a weight and then find the gradient (dE/dw) of that weight with respect to a loss and then make an update on the binary matrix through backpropagation, there is not really an activation function (which by requirement must be differentiable) that can keep the values discrete (like 0 and 1) but rather you will end up with continous values (like these decimal values).
Therefore it is saying since the idea of having binary values be weights and for them to be back-propagated in a way where the weights + activation function also yields an updated weight matrix that is also binary is difficult, another solution like the Bernoulli Distribution is used instead to initialize parameters of a model.
Hope this helps,

Related

Would this be a valid Implementation of an ordinal CrossEntropy?

Would this be a valid implementation of a cross entropy loss that takes the ordinal structure of the GT y into consideration? y_hat is the prediction from a neural network.
ce_loss = F.cross_entropy(y_hat, y, reduction="none")
distance_weight = torch.abs(y_hat.argmax(1) - y) + 1
ordinal_ce_loss = torch.mean(distance_weight * ce_loss)
I'll attempt to answer this question by first fully defining the task, since the question is a bit sparse on details.
I have a set of ordinal classes (e.g. first, second, third, fourth,
etc.) and I would like to predict the class of each data example from
among this set. I would like to define an entropy-based loss-function
for this problem. I would like this loss function to weight the loss
between a predicted class torch.argmax(y_hat) and the true class y
according to the ordinal distance between the two classes. Does the
given loss expression accomplish this?
Short answer: sure, it is "valid". You've roughly implemented L1-norm ordinal class weighting. I'd question whether this is truly the correct weighting strategy for this problem.
For instance, consider that for a true label n, the bin n response is weighted by 1, but the bin n+1 and n-1 responses are weighted by 2. This means that a lot more emphasis will be placed on NOT predicting false positives than on correctly predicting true positives, which may imbue your model with some strange bias.
It also means that examples on the edge will result in a larger total sum of weights, meaning that you'll be weighting examples where the true label is say "first" or "last" more highly than the intermediate classes. (Say you have 5 classes: 1,2,3,4,5. A true label of 1 will require distance_weight of [1,2,3,4,5], the sum of which is 15. A true label of 3 will require distance_weight of [3,2,1,2,3], the sum of which is 11.
In general, classification problems and entropy-based losses are underpinned by the assumption that no set of classes or categories is any more or less related than any other set of classes. In essence, the input data is embedded into an orthogonal feature space where each class represents one vector in the basis. This is quite plainly a bad assumption in your case, meaning that this embedding space is probably not particularly elegant: thus, you have to correct for it with sort of a hack-y weight fix. And in general, this assumption of class non-correlation is probably not true in a great many classification problems (consider e.g. the classic ImageNet classification problem, wherein the class pairs [bus,car], and [bus,zebra] are treated as equally dissimilar. But this is probably a digression into the inherent lack of usefulness of strict ontological structuring of information which is outside the scope of this answer...)
Long Answer: I'd highly suggest moving into a space where the ordinal value you care about is instead expressed in a continuous space. (In the first, second, third example, you might for instance output a continuous value over the range [1,max_place]. This allows you to benefit from loss functions that already capture well the notion that predictions closer in an ordered space are better than predictions farther away in an ordered space (e.g. MSE, Smooth-L1, etc.)
Let's consider one more time the case of the [first,second,third,etc.] ordinal class example, and say that we are trying to predict the places of a set of runners in a race. Consider two races, one in which the first place runner wins by 30% relative to the second place runner, and the second in which the first place runner wins by only 1%. This nuance is entirely discarded by the ordinal discrete classification. In essence, the selection of an ordinal set of classes truncates the amount of information conveyed in the prediction, which means not only that the final prediction is less useful, but also that the loss function encodes this strange truncation and binarization, which is then reflected (perhaps harmfully) in the learned model. This problem could likely be much more elegantly solved by regressing the finishing position, or perhaps instead by regressing the finishing time, of each athlete, and then performing the final ordinal classification into places OUTSIDE of the network training.
In conclusion, you might expect a well-trained ordinal classifier to produce essentially a normal distribution of responses across the class bins, with the distribution peak on the true value: a binned discretization of a space that almost certainly could, and likely should, be treated as a continuous space.

Using Softmax Activation function after calculating loss from BCEWithLogitLoss (Binary Cross Entropy + Sigmoid activation)

I am going through a Binary Classification tutorial using PyTorch and here, the last layer of the network is torch.Linear() with just one neuron. (Makes Sense) which will give us a single neuron. as pred=network(input_batch)
After that the choice of Loss function is loss_fn=BCEWithLogitsLoss() (which is numerically stable than using the softmax first and then calculating loss) which will apply Softmax function to the output of last layer to give us a probability. so after that, it'll calculate the binary cross entropy to minimize the loss.
loss=loss_fn(pred,true)
My concern is that after all this, the author used torch.round(torch.sigmoid(pred))
Why would that be? I mean I know it'll get the prediction probabilities in the range [0,1] and then round of the values with default threshold of 0.5.
Isn't it better to use the sigmoid once after the last layer within the network rather using a softmax and a sigmoid at 2 different places given it's a binary classification??
Wouldn't it be better to just
out = self.linear(batch_tensor)
return self.sigmoid(out)
and then calculate the BCE loss and use the argmax() for checking accuracy??
I am just curious that can it be a valid strategy?
You seem to be thinking of the binary classification as a multi-class classification with two classes, but that is not quite correct when using the binary cross-entropy approach. Let's start by clarifying the goal of the binary classification before looking at any implementation details.
Technically, there are two classes, 0 and 1, but instead of considering them as two separate classes, you can see them as opposites of each other. For example, you want to classify whether a StackOverflow answer was helpful or not. The two classes would be "helpful" and "not helpful". Naturally, you would simply ask "Was the answer helpful?", the negative aspect is left off, and if that wasn't the case, you could deduce that it was "not helpful". (Remember, it's a binary case, there is no middle ground).
Therefore, your model only needs to predict a single class, but to avoid confusion with the actual two classes, that can be expressed as: The model predicts the probability that the positive case occurs. In context of the previous example: What is the probability that the StackOverflow answer was helpful?
Sigmoid gives you values in the range [0, 1], which are the probabilities. Now you need to decide when the model is confident enough for it to be positive by defining a threshold. To make it balanced, the threshold is 0.5, therefore as long as the probability is greater than 0.5 it is positive (class 1: "helpful") otherwise it's negative (class 0: "not helpful"), which is achieved by rounding (i.e. torch.round(torch.sigmoid(pred))).
After that the choice of Loss function is loss_fn=BCEWithLogitsLoss() (which is numerically stable than using the softmax first and then calculating loss) which will apply Softmax function to the output of last layer to give us a probability.
Isn't it better to use the sigmoid once after the last layer within the network rather using a softmax and a sigmoid at 2 different places given it's a binary classification??
BCEWithLogitsLoss applies Sigmoid not Softmax, there is no Softmax involved at all. From the nn.BCEWithLogitsLoss documentation:
This loss combines a Sigmoid layer and the BCELoss in one single class. This version is more numerically stable than using a plain Sigmoid followed by a BCELoss as, by combining the operations into one layer, we take advantage of the log-sum-exp trick for numerical stability.
By not applying Sigmoid in the model you get a more numerically stable version of the binary cross-entropy, but that means you have to apply the Sigmoid manually if you want to make an actual prediction outside of training.
[...] and use the argmax() for checking accuracy??
Again, you're thinking of the multi-class scenario. You only have a single output class, i.e. output has size [batch_size, 1]. Taking argmax of that, will always give you 0, because that is the only available class.

Determining the values of the filter matrices in a CNN

I am getting started with deep learning and have a basic question on CNN's.
I understand how gradients are adjusted using backpropagation according to a loss function.
But I thought the values of the convolving filter matrices (in CNN's) needs to be determined by us.
I'm using Keras and this is how (from a tutorial) the convolution layer was defined:
classifier = Sequential()
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
There are 32 filter matrices with dimensions 3x3 is used.
But, how are the values for these 32x3x3 matrices are determined?
It's not the gradients that are adjusted, the gradient calculated with the backpropagation algorithm is just the group of partial derivatives with respect to each weight in the network, and these components are in turn used to adjust the network weights in order to minimize the loss.
Take a look at this introductive guide.
The weights in the convolution layer in your example will be initialized to random values (according to a specific method), and then tweaked during training, using the gradient at each iteration to adjust each individual weight. Same goes for weights in a fully connected layer, or any other layer with weights.
EDIT: I'm adding some more details about the answer above.
Let's say you have a neural network with a single layer, which has some weights W. Now, during the forward pass, you calculate your output yHat for your network, compare it with your expected output y for your training samples, and compute some cost C (for example, using the quadratic cost function).
Now, you're interested in making the network more accurate, ie. you'd like to minimize C as much as possible. Imagine you want to find the minimum value for simple function like f(x)=x^2. You can start at some random point (as you did with your network), then compute the slope of the function at that point (ie, the derivative) and move down that direction, until you reach a minimum value (a local minimum at least).
With a neural network it's the same idea, with the difference that your inputs are fixed (the training samples), and you can see your cost function C as having n variables, where n is the number of weights in your network. To minimize C, you need the slope of the cost function C in each direction (ie. with respect to each variable, each weight w), and that vector of partial derivatives is the gradient.
Once you have the gradient, the part where you "move a bit following the slope" is the weights update part, where you update each network weight according to its partial derivative (in general, you subtract some learning rate multiplied by the partial derivative with respect to that weight).
A trained network is just a network whose weights have been adjusted over many iterations in such a way that the value of the cost function C over the training dataset is as small as possible.
This is the same for a convolutional layer too: you first initialize the weights at random (ie. you place yourself on a random position on the plot for the cost function C), then compute the gradients, then "move downhill", ie. you adjust each weight following the gradient in order to minimize C.
The only difference between a fully connected layer and a convolutional layer is how they calculate their outputs, and how the gradient is in turn computed, but the part where you update each weight with the gradient is the same for every weight in the network.
So, to answer your question, those filters in the convolutional kernels are initially random and are later adjusted with the backpropagation algorithm, as described above.
Hope this helps!
Sergio0694 states ,"The weights in the convolution layer in your example will be initialized to random values". So if they are random and say I want 10 filters. Every execution algorithm could find different filter. Also say I have Mnist data set. Numbers are formed of edges and curves. Is it guaranteed that there will be a edge filter or curve filter in 10?
I mean is first 10 filters most meaningful most distinctive filters we can find.
best

Rules to set hyper-parameters alpha and theta in LDA model

I will like to know more about whether or not there are any rule to set the hyper-parameters alpha and theta in the LDA model. I run an LDA model given by the library gensim:
ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=30, id2word = dictionary, passes=50, minimum_probability=0)
But I have my doubts on the specification of the hyper-parameters. From what I red in the library documentation, both hyper-parameters are set to 1/number of topics. Given that my model has 30 topics, both hyper-parameters are set to a common value 1/30. I am running the model in news-articles that describe the economic activity. For this reason, I expect that the document-topic distribution (theta) to be high (similar topics in documents),while the topic-word distribution (alpha) be high as well (topics sharing many words in common, or, words not being so exclusive for each topic). For this reason, and given that my understanding of the hyper-parameters is correct, is 1/30 a correct specification value?
I'll assume you expect theta and phi (document-topic proportion and topic-word proportion) to be closer to equiprobable distributions instead of sparse ones, with exclusive topics/words.
Since alpha and beta are parameters to a symmetric Dirichlet prior, they have a direct influence on what you want. A Dirichlet distribution outputs probability distributions. When the parameter is 1, all possible distributions are equally liked to outcome (for K=2, [0.5,0.5] and [0.99,0.01] have the same chances). When parameter>1, this parameter behaves as a pseudo-counter, as a prior belief. For a high value, equiprobable output is preferred (P([0.5,0.5])>P([0.99,0.01]). Parameter<1 has the opposite behaviour. For big vocabularies you don't expect topics with probability in all words, that's why beta tends to be under 1 (the same for alpha).
However, since you're using Gensim, you can let the model learn alpha and beta values for you, allowing to learn asymmetric vectors (see here), where it stands
alpha can be set to an explicit array = prior of your choice. It also
support special values of ‘asymmetric’ and ‘auto’: the former uses a
fixed normalized asymmetric 1.0/topicno prior, the latter learns an
asymmetric prior directly from your data.
The same for eta (which I call beta).

Loss function for ordinal target on SoftMax over Logistic Regression

I am using Pylearn2 OR Caffe to build a deep network. My target is ordered nominal. I am trying to find a proper loss function but cannot find any in Pylearn2 or Caffe.
I read a paper "Loss Functions for Preference Levels: Regression with Discrete Ordered Labels" . I get the general idea - but I am not sure I understand what will the thresholds be, if my final layer is a SoftMax over Logistic Regression (outputting probabilities).
Can some help me by pointing to any implementation of such a loss function ?
Thanks
Regards
For both pylearn2 and caffe, your labels will need to be 0-4 instead of 1-5...it's just the way they work. The output layer will be 5 units, each is a essentially a logistic unit...and the softmax can be thought of as an adaptor that normalizes the final outputs. But "softmax" is commonly used as an output type. When training, the value of any individual unit is rarely ever exactly 0.0 or 1.0...it's always a distribution across your units - which log-loss can be calculated on. This loss is used to compare against the "perfect" case and the error is back-propped to update your network weights. Note that a raw output from PL2 or Caffe is not a specific digit 0,1,2,3, or 5...it's 5 number, each associated to the likelihood of each of the 5 classes. When classifying, one just takes the class with the highest value as the 'winner'.
I'll try to give an example...
say I have a 3 class problem, I train a network with a 3 unit softmax.
the first unit represents the first class, second the second and third, third.
Say I feed a test case through and get...
0.25, 0.5, 0.25 ...0.5 is the highest, so a classifier would say "2". this is the softmax output...it makes sure the sum of the output units is one.
You should have a look at ordinal (logistic) regression. This is the formal solution to the problem setup you describe ( do not use plain regression as the distance measures of errors are wrong).
https://stats.stackexchange.com/questions/140061/how-to-set-up-neural-network-to-output-ordinal-data
In particular I recommend looking at Coral ordinal regression implementation at
https://github.com/ck37/coral-ordinal/issues.