Extending MIPS one-cycle data path to implement movcn - mips

I have trouble implementing the movcn instruction in MIPS. (MIPS One-Cycle Datapath)
Here is how the instruction is defined:
R[rd] = R[rs] if R[rt] < 0
I am not sure what to use to compare if R[rt] < 0. Should I add a comparator in the path?

I think we're in the same UdeM class! Movcn isn't native to MIPS.
You already have a comparator in the datapath; the ALU. Consider that your read data 2 output from the Register File (RD2) should be changed to zero before being inputted into the ALU, if a certain signal is recieved indicating that the instruction is movcn.
I'm not gonna say anything else, but hopefully this helps you out enough to set you on the right track. Good luck with the homework, and godspeed.

Related

Simulink implementation of Fourier Transform Property of Integration and Differentiation (Part 2)

So this is a continuation of the thread in this link:
https://stackoverflow.com/questions/33677430/simulink-implementation-of-fourier-transform-property-of-integration-and-differe#
I've made some progress (I think) and I now have this:
The output in scope1 is obviously incorrect, but I'm not sure what i have to edit to make it correct. The signal in the sign wave is 10pi. Anyone have any suggestions?
I tried your model, and I think the problem is here:
You have the real signal at sine. After using FFT you got complex signal with nonzero real part and zero imaginary part. And then you multiply it at imaginary number.
So after that you already have signal with zero real part. I didn't check further, but I think simulink works correct.

How would one go about implementing an add immediate in Verilog for an ALU?

I'm working with a 32-bit ALU for a MIPS processor.
I've read Pong Chu's book on verilog and other texts but I haven't really come across a concrete answer as to how exactly I would implement an add immediate with verilog?
for example with the asm code:
addi Y, A, immediate
add is as simple as y = a + b
but how do i interpret an immediate operand?
In overview, you can implement different operand capability for a function such as this in the following way:
Implement an add function where the operands are fed via a multiplexer. The multiplexer will have a few inputs, one of which will be an immediate value from your instruction word. Use the op code part of your instruction word to select which multiplexer input to use for the addition.
Other inputs to the multiplexer might be the output of a 'registers' memory, a forwarding path from somewhere else in your processor, etc.
I have not provided any code, but this would be completely dependent on what existing structure you already had. hopefully this overview will be enough to put you on the right track.
The wikipedia page on the MIPS architecture has a diagram showing multiplexers used in this way.

PIC Assembly: Calling functions with variables

So say I have a variable, which holds a song number. -> song_no
Depending upon the value of this variable, I wish to call a function.
Say I have many different functions:
Fcn1
....
Fcn2
....
Fcn3
So for example,
If song_no = 1, call Fcn1
If song_no = 2, call Fcn2
and so forth...
How would I do this?
you should have compare function in the instruction set (the post suggests you are looking for assembly solution), the result for that is usually set a True bit or set a value in a register. But you need to check the instruction set for that.
the code should look something like:
load(song_no, $R1)
cmpeq($1,R1) //result is in R3
jmpe Fcn1 //jump if equal
cmpeq ($2,R1)
jmpe Fcn2
....
Hope this helps
I'm not well acquainted with the pic, but these sort of things are usually implemented as a jump table. In short, put pointers to the target routines in an array and call/jump to the entry indexed by your song_no. You just need to calculate the address into the array somehow, so it is very efficient. No compares necessary.
To elaborate on Jens' reply the traditional way of doing on 12/14-bit PICs is the same way you would look up constant data from ROM, except instead of returning an number with RETLW you jump forward to the desired routine with GOTO. The actual jump into the jump table is performed by adding the offset to the program counter.
Something along these lines:
movlw high(table)
movwf PCLATH
movf song_no,w
addlw table
btfsc STATUS,C
incf PCLATH
addwf PCL
table:
goto fcn1
goto fcn2
goto fcn3
.
.
.
Unfortunately there are some subtleties here.
The PIC16 only has an eight-bit accumulator while the address space to jump into is 11-bits. Therefore both a directly writable low-byte (PCL) as well as a latched high-byte PCLATH register is available. The value in the latch is applied as MSB once the jump is taken.
The jump table may cross a page, hence the manual carry into PCLATH. Omit the BTFSC/INCF if you know the table will always stay within a 256-instruction page.
The ADDWF instruction will already have been read and be pointing at table when PCL is to be added to. Therefore a 0 offset jumps to the first table entry.
Unlike the PIC18 each GOTO instruction fits in a single 14-bit instruction word and PCL addresses instructions not bytes, so the offset should not be multiplied by two.
All things considered you're probably better off searching for general PIC16 tutorials. Any of these will clearly explain how data/jump tables work, not to mention begin with the basics of how to handle the chip. Frankly it is a particularly convoluted architecture and I would advice staying with the "free" hi-tech C compiler unless you particularly enjoy logic puzzles or desperately need the performance.

error in Assigning values to bytes in a 2d array of registers in Verilog .Error

Hi when i write this piece of code :
module memo(out1);
reg [3:0] mem [2:0] ;
output wire [3:0] out1;
initial
begin
mem[0][3:0]=4'b0000;
mem[1][3:0]=4'b1000;
mem[2][3:0]=4'b1010;
end
assign out1= mem[1];
endmodule
i get the following warnings which make the code unsynthesizable
WARNING:Xst:1780 - Signal mem<2> is never used or assigned. This unconnected signal will be trimmed during the optimization process.
WARNING:Xst:653 - Signal mem<1> is used but never assigned. This sourceless signal will be automatically connected to value 1000.
WARNING:Xst:1780 - Signal > is never used or assigned. This unconnected signal will be trimmed during the optimization process.
Why am i getting these warnings ?
Haven't i assigned the values of mem[0] ,mem[1] and mem[2]!?? Thanks for your help!
Your module has no inputs and a single output -- out1. I'm not totally sure what the point of the module is with respect to your larger system, but you're basically initializing mem, but then only using mem[1]. You could equivalently have a module which just assigns out1 to the value 4'b1000 (mem never changes). So yes -- you did initialize the array, but because you didn't use any of the other values the xilinx tools are optimizing your module during synthesis and "trimming the fat." If you were to simulate this module (say in modelsim) you'd see your initializations just fine. Based on your warnings though I'm not sure why you've come to the conclusion that your code is unsynthesizable. It appears to me that you could definitely synthesize it, but that it's just sort of a weird way to assign a single value to 4'b1000.
With regards to using initial begins to store values in block ram (e.g. to make a ROM) that's fine. I've done that several times without issue. A common use for this is to store coefficients in block ram, which are read out later. That stated the way this module is written there's no way to read anything out of mem anyway.

What exactly is the danger of using magic debug values (such as 0xDEADBEEF) as literals?

It goes without saying that using hard-coded, hex literal pointers is a disaster:
int *i = 0xDEADBEEF;
// god knows if that location is available
However, what exactly is the danger in using hex literals as variable values?
int i = 0xDEADBEEF;
// what can go wrong?
If these values are indeed "dangerous" due to their use in various debugging scenarios, then this means that even if I do not use these literals, any program that during runtime happens to stumble upon one of these values might crash.
Anyone care to explain the real dangers of using hex literals?
Edit: just to clarify, I am not referring to the general use of constants in source code. I am specifically talking about debug-scenario issues that might come up to the use of hex values, with the specific example of 0xDEADBEEF.
There's no more danger in using a hex literal than any other kind of literal.
If your debugging session ends up executing data as code without you intending it to, you're in a world of pain anyway.
Of course, there's the normal "magic value" vs "well-named constant" code smell/cleanliness issue, but that's not really the sort of danger I think you're talking about.
With few exceptions, nothing is "constant".
We prefer to call them "slow variables" -- their value changes so slowly that we don't mind recompiling to change them.
However, we don't want to have many instances of 0x07 all through an application or a test script, where each instance has a different meaning.
We want to put a label on each constant that makes it totally unambiguous what it means.
if( x == 7 )
What does "7" mean in the above statement? Is it the same thing as
d = y / 7;
Is that the same meaning of "7"?
Test Cases are a slightly different problem. We don't need extensive, careful management of each instance of a numeric literal. Instead, we need documentation.
We can -- to an extent -- explain where "7" comes from by including a tiny bit of a hint in the code.
assertEquals( 7, someFunction(3,4), "Expected 7, see paragraph 7 of use case 7" );
A "constant" should be stated -- and named -- exactly once.
A "result" in a unit test isn't the same thing as a constant, and requires a little care in explaining where it came from.
A hex literal is no different than a decimal literal like 1. Any special significance of a value is due to the context of a particular program.
I believe the concern raised in the IP address formatting question earlier today was not related to the use of hex literals in general, but the specific use of 0xDEADBEEF. At least, that's the way I read it.
There is a concern with using 0xDEADBEEF in particular, though in my opinion it is a small one. The problem is that many debuggers and runtime systems have already co-opted this particular value as a marker value to indicate unallocated heap, bad pointers on the stack, etc.
I don't recall off the top of my head just which debugging and runtime systems use this particular value, but I have seen it used this way several times over the years. If you are debugging in one of these environments, the existence of the 0xDEADBEEF constant in your code will be indistinguishable from the values in unallocated RAM or whatever, so at best you will not have as useful RAM dumps, and at worst you will get warnings from the debugger.
Anyhow, that's what I think the original commenter meant when he told you it was bad for "use in various debugging scenarios."
There's no reason why you shouldn't assign 0xdeadbeef to a variable.
But woe betide the programmer who tries to assign decimal 3735928559, or octal 33653337357, or worst of all: binary 11011110101011011011111011101111.
Big Endian or Little Endian?
One danger is when constants are assigned to an array or structure with different sized members; the endian-ness of the compiler or machine (including JVM vs CLR) will affect the ordering of the bytes.
This issue is true of non-constant values, too, of course.
Here's an, admittedly contrived, example. What is the value of buffer[0] after the last line?
const int TEST[] = { 0x01BADA55, 0xDEADBEEF };
char buffer[BUFSZ];
memcpy( buffer, (void*)TEST, sizeof(TEST));
I don't see any problem with using it as a value. Its just a number after all.
There's no danger in using a hard-coded hex value for a pointer (like your first example) in the right context. In particular, when doing very low-level hardware development, this is the way you access memory-mapped registers. (Though it's best to give them names with a #define, for example.) But at the application level you shouldn't ever need to do an assignment like that.
I use CAFEBABE
I haven't seen it used by any debuggers before.
int *i = 0xDEADBEEF;
// god knows if that location is available
int i = 0xDEADBEEF;
// what can go wrong?
The danger that I see is the same in both cases: you've created a flag value that has no immediate context. There's nothing about i in either case that will let me know 100, 1000 or 10000 lines that there is a potentially critical flag value associated with it. What you've planted is a landmine bug that, if I don't remember to check for it in every possible use, I could be faced with a terrible debugging problem. Every use of i will now have to look like this:
if (i != 0xDEADBEEF) { // Curse the original designer to oblivion
// Actual useful work goes here
}
Repeat the above for all of the 7000 instances where you need to use i in your code.
Now, why is the above worse than this?
if (isIProperlyInitialized()) { // Which could just be a boolean
// Actual useful work goes here
}
At a minimum, I can spot several critical issues:
Spelling: I'm a terrible typist. How easily will you spot 0xDAEDBEEF in a code review? Or 0xDEADBEFF? On the other hand, I know that my compile will barf immediately on isIProperlyInitialised() (insert the obligatory s vs. z debate here).
Exposure of meaning. Rather than trying to hide your flags in the code, you've intentionally created a method that the rest of the code can see.
Opportunities for coupling. It's entirely possible that a pointer or reference is connected to a loosely defined cache. An initialization check could be overloaded to check first if the value is in cache, then to try to bring it back into cache and, if all that fails, return false.
In short, it's just as easy to write the code you really need as it is to create a mysterious magic value. The code-maintainer of the future (who quite likely will be you) will thank you.