Can offset be a register? [duplicate] - function

I'm curious as to why we are not allowed to use registers as offsets in MIPS. I know that you can't use registers as offsets like this: lw $t3, $t1($t4); I'm just curious as to why that is the case.
Is it a hardware restriction? Or simply just part of the ISA?
PS: if you're looking for what to do instead, see Load Word in MIPS, using register instead of immediate offset from another register or look at compiler output for a C function like int foo(int *arr, int idx){ return arr[idx]; } - https://godbolt.org/z/PhxG57ox1

I'm curious as to why we are not allowed to use registers as offsets in MIPS.
I'm not sure if you mean "why does MIPS assembly not permit you to write it this form" or "why does the underlying ISA not offer this form".
If it's the former, then the answer is that the base ISA doesn't have any machine instructions that offers that functionality, and apparently the designers didn't decide to offer any pseudo-instruction that would implement that behind the scenes.2
If you're asking why the ISA doesn't offer it in the first place, it's just a design choice. By offering fewer or simpler addressing modes, you get the following advantages:
Less room is needed to encode a more limited set of possibilities, so you save encoding space for more opcodes, shorter instructions, etc.
The hardware can be simpler, or faster. For example, allowing two registers in address calculation may result in:
The need for an additional read port in the register file1.
Additional connections between the register file and the AGU to get both registers values there.
The need to do a full width (32 or 64 bit) addition rather than a simpler address-side + 16 bit-addition for the offset.
The need to have a three-input ALU if you want to still want to support immediate offsets with the 2-register addresses (and they are less useful if you don't).
Additional complexity in instruction decoding and address-generation since you may need to support two quite different paths for address generation.
Of course, all of those trade-offs may very well pay off in some contexts that could make good use of 2-reg addressing with smaller or faster code, but the original design which was heavily inspired by the RISC philosophy didn't include it. As Peter points out in the comments, new addressing modes have been subsequently added for some cases, although apparently not a general 2-reg addressing mode for load or store.
Is it a hardware restriction? Or simply just part of the ISA?
There's a bit of a false dichotomy there. Certainly it's not a hardware restriction in the sense that hardware could certainly support this, even when MIPS was designed. It sort of seems to imply that some existing hardware had that restriction and so the MIPS ISA somehow inherited it. I would suspect it was much the other way around: the ISA was defined this way, based on analysis of how likely hardware would be implemented, and then it became a hardware simplification since MIPS hardware doesn't need to support anything outside of what's in the MIPS ISA.
1 E.g., to support store instructions which would need to read from 3 registers.
2 It's certainly worth asking whether such a pseudo-instruction is a good idea or not: it would probably expand to an add of the two registers to a temporary register and then a lw with the result. There is always a danger that this hides "too much" work. Since this partly glosses over the difference between a true load that maps 1:1 to a hardware load, and the version that is doing extra arithmetic behind the covers, it is easy to imagine it might lead to sup-optimal decisions.
Take the classic example of linearly accessing two arrays of equal element size in a loop. With 2-reg addressing, it is natural to write this loop as two 2-reg accesses (each with a different base register and a common offset register). The only "overhead" for the offset maintenance is the single offset increment. This hides the fact that internally there are two hidden adds required to support the addressing mode: it would have simply been better to increment each base directly and not use the offset. Furthermore, once the overhead is clear, you can see that unrolling the loop and using immediate offsets can further reduce the overhead.

Related

Overlapped input and output for cublas functions

I'm working with some large data using the cublas library for matrix multiplication. To save memory space, I want something like A=A*B where A and B are both n-by-n square matrices, i.e. using the same memory space for the output and one of the input matrices.
While some old posts say this is not allowed in the cublas library, I actually implemented it using the cublasZgemmStridedBatched() function. Surprisingly the calculation is totally correct, and is stable with repeated run. So I'm wondering if the overlapped input and output is supported by the current cublas library. If yes, how much memory does it actually save? I mean intuitively the function at least needs some extra memory to store intermediate calculations, since Aij = AikBkj is dependent on a whole row of A. Is this particularly memory saving for batched gemms?
While some old posts say this is not allowed in the cublas library,
And they are completely correct (noting that the "old posts" were referring to the standard GEMM calls, not the batched implementations you are asking about).
I actually implemented it using the cublasZgemmStridedBatched() function. Surprisingly the calculation is totally correct, and is stable with repeated run
This isn't documented as being safe and I suspect you are probably only getting stable results by luck, given that small matrices are probably preloaded into shared memory or registers and so an in-place operation works. If you went to larger matrices, I guess you would see failures, because eventually there would be a case where a single GEMM could not be performed without multiple trips to the source matrix after a write cycle, which would corrupt the source matrix.
I would not recommend in-place operations even if you find it works for one case. Different problem sizes, library versions, and hardware could produce failures which you simply haven't tested. The choice and associated risk is up to you.

Why are CUDA indices 2D? [duplicate]

I have basically the same question as posed in this discussion. In particular I want to refer to this final response:
I think there are two different questions mixed together in this
thread:
Is there a performance benefit to using a 2D or 3D mapping of input or output data to threads? The answer is "absolutely" for all the
reasons you and others have described. If the data or calculation has
spatial locality, then so should the assignment of work to threads in
a warp.
Is there a performance benefit to using CUDA's multidimensional grids to do this work assignment? In this case, I don't think so since
you can do the index calculation trivially yourself at the top of the
kernel. This burns a few arithmetic instructions, but that should be
negligible compared to the kernel launch overhead.
This is why I think the multidimensional grids are intended as a
programmer convenience rather than a way to improve performance. You
do absolutely need to think about each warp's memory access patterns,
though.
I want to know if this situation still holds today. I want to know the reason why there is a need for a multidimensional "outer" grid.
What I'm trying to understand is whether or not there is a significant purpose to this (e.g. an actual benefit from spatial locality) or is it there for convenience (e.g. in an image processing context, is it there only so that we can have CUDA be aware of the x/y "patch" that a particular block is processing so it can report it to the CUDA Visual Profiler or something)?
A third option is that this nothing more than a holdover from earlier versions of CUDA where it was a workaround for hardware indexing limits.
There is definitely a benefit in the use of multi-dimensional grid. The different entries (tid, ctaid) are read-only variables visible as special registers. See PTX ISA
PTX includes a number of predefined, read-only variables, which are visible as special registers and accessed through mov or cvt instructions.
The special registers are:
%tid
%ntid
%laneid
%warpid
%nwarpid
%ctaid
%nctaid
If some of this data may be used without further processing, not-only you may gain arithmetic instructions - potentially at each indexing step of multi-dimension data, but more importantly you are saving registers which is a very scarce resource on any hardware.

How does a zero register improve performance?

In the MIPS ISA, there's a zero register ($r0) which always gives a value of zero. This allows the processor to:
Any instruction which produces result that is to be discarded can direct its target to this register
To be a source of 0
It is said in this source that this improved the speed of the CPU. How does it improve performance? And what are the reasons why not all ISA adopt this zero register?
$r0 is not general purpose. It is hardwired to 0. No matter what you
do to this register, it always has a value of 0. You might wonder why
such a register is needed in MIPS.
The designers of MIPS used benchmarks (programs used to determine the
performance of a CPU), which convinced them that having a register
hardwired to 0 would improve the performance (speed) of the CPU as
opposed to not having it. Not everyone agrees a register hardwired to
0 is essential, so not all ISAs have a zero register.
There's a few potential ways that this can improve performance; it's not clear which ones apply to that particular processor, but I've listed them roughly in order from most to least likely.
It avoids spurious pipeline stalls. Without an explicit zero register, it's necessary to take a register, zero it out, and use its value. This means that the zero-using operation is dependent on the zeroing operation, and (depending on how powerful the pipeline forwarding system is) possibly on the zeroed register's previous value. Architectures like x86, which have quite small register files and basically virtualize their registers to keep that from causing problems, have extremely powerful hazard analysis tools. The same is not generally true of RISC processors.
Certain operations may be more pipelineable if they can avoid a register read. If an explicit zero register is used, the fact that the operand will be zero is known at the instruction decode stage, rather than later on in the register fetch stage. Thus, the register read stage can be skipped.
Similarly, the ability to explicitly discard results avoids the need for a register write stage.
Certain operations may generate simpler microcode when one of their operands is known to be zero, or when the result is known to be discarded.
An explicit zero register takes some pressure off the compiler's optimizer, as it doesn't need to be as careful with its register assignment (no need to identify a register which won't cause a stall on read or write).
For each of your items, here's an answer.
Consider instructions that compulsory take a register for output, where you want to discard this output. Normally, you'd have to make sure that you have a free register available, and if not, push some of your current registers onto the stack, which is a costly operation. Evidently, it happens a lot that the output of operations is discarded, and the easiest way to deal with this is to have a 'unused' register available.
Now that we have such an unused register, why not use it? It happens a lot that you want to zero-initialize something or compare something to zero. The long way is to first write zero to that register (which requires an extra instruction and the literal for zero in your machine code, which may be of the form 0x00000000 which is rather long) and then use it. So, one instruction shaved off and a little bit of your program size as well.
These optimizations may seem a bit trivial and may raise the question 'how much does that actually improve anything?' The answer here is that the operations described above are apparently used a lot on your MIPS processor.
The concept of a zero register is not new. I first encountered it on a CDC 6600 mainframe, which dates back to the mid-to-late 1960's. In some ways it was one of the first RISC processors, and was the world's fastest computer for 5 years. In that architecture, the "B0" register was hardwired to always be zero. http://en.wikipedia.org/wiki/CDC_6600
The benefit of such a register is primarily that it simplified the instruction set. When the decoding and orchestration of simple and regular instruction sets can be implemented without microcode, it increases performance. In addition, for the 6600 like most LSI chips today, the time spent for a signal to travel the length a "wire" becomes on of the key factors in execution speed, and keeping the instruction set simple (and avoiding microcode) allows less transistors, and results in shorter circuit paths.
A zero register allows saving some opcodes when designing a new
instruction set architecture (ISA).
For example, the main RISC-V spec has 32 pseudo-instructions that
depend on the zero register (cf. Tables 26.2 and 26.3). A pseudo-instruction is an
instruction that is mapped by the assembler to another real
instruction (for example, branch-if-equal-to-zero is mapped to
branch-if-equal). For comparison: the main RISV-V spec lists 164
real instruction opcodes (i.e. counting RV(32|64)[IMAFD] base/extensions, a.k.a. RV64G). That means without a zero register RISC-V RV64G would occupy 32 more opcodes for those instructions (i.e. 20 % more). For a concrete RISC-V CPU
implementation, this real-to-pseudo instruction ratio may shift in either direction
depending on which extensions are selected.
Having less opcodes simplifies the instruction decoder.
A more complex decoder needs more time for decoding instructions
or occupies more gates (that can't be used for more useful CPU units)
or both.
Existing, incrementally developed ISAs have to deal with
backwards-compatibility. Thus, if your original ISA design
doesn't include a zero register, you can't just add it in a later
revision without breaking compatibility. Also, if your existing
ISA already requires a very complex decoder, adding then a zero
register doesn't pay off.
Besides the modern RISC-V ISA (developed since 2010, first
ratification in 2019), ARMv8 AArch64 (a 64 Bit ISA released in 2011),
in contrast to the previous ARM 32 bit ISAs, also features a zero register. Because of this and other changes
AArch64 ISA has much less in common with previous ARM 32 Bit
ISAs than - say - x86 and x86-64 ISAs.
In contrast to AArch64, x86-64
doesn't has a zero register. Although x86-64 is more modern than
the previous 32 bit x86 ISA, its ISA only changed incrementally.
Thus, it features all the existing x86 opcodes plus 64 bit
variants, and thus the decoder already is very complex.

MIPS Architecture : NOP (No-Operation) Vs Data Forwarding in Hazard Prevention

I learnt in computer architecture course that, data hazard can be prevented by using several arbitrary, independent nop instructions in between two mutually dependent instructions. This can be done at assembly level in compiler design.
The alternative way to avoid data hazard is to use data forwarding.
I am bit confused, How these two alternatives differ as far as performance, speed and hardware is concerned. Because as per my knowledge data forwarding is to be implemented at hardware level, whereas nop can be implemented at assembly level.
Anybody please explain me which approach is better if we consider factors such as performance, speed, hardware etc?
Thanks.
Obviously, having the compiler insert nops into the code stream to fill pipeline slots allows hardware to be simplified which can reduce the duration of a pipeline stage or the depth of the pipeline, reduce design effort (time to market, project risk, design cost), or allow a full processor core to fit on a single chip (which helps performance). However, this benefit is tiny compared to the loss of performance from not using forwarding. Higher latency for dependent instructions is very bad for typical programs.
The MIPS R2000, which had both delayed branches and delayed loads, provided result forwarding. (MIPS is an acronym for "Microprocessor without Interlocked Pipeline Stages"). Delayed loads were soon removed from MIPS (which was possible because such did not affect binary compatibility of correct code). The use of delayed instructions was partially from a belief that most delay slots could be filled by the compiler with useful instructions and partially from believing that the increase in code size was not important relative to the simplification of hardware.
Reducing the latency of a load operation was not practical, so the pipeline would need to be stalled for a cycle anyway. The cost of a nop is in cache and memory capacity effects (i.e., the effect of lower code density), and in some cases a single load delay slot could be filled.
Exposing the pipeline organization also has implications for binary compatibility. Later binary compatible implementations must accommodate the ISA designed for the original pipeline organization. A single delayed branch slot works reasonably well for a simple 5-stage scalar implementation (it can be filled with a useful instruction most of the time and allows zero-effective-delay branches [i.e., no stall to resolve the branch or prediction and flushing the pipeline on misprediction]), but when the pipeline is deepened (or made wider) prediction or stalling becomes necessary anyway.
If sufficient parallelism exists in the targeted workloads, hardware simplicity is sufficiently important, and binary compatibility is not a problem, then exposing a pipeline with minimal support for dynamically detecting and handling stall conditions may be sensible. (There are also ways of encoding nops that avoid most of the code size expansion issues.) Having reliably sufficient parallelism (whether instruction-level or thread-level) allows the avoiding of nops; by compiler scheduling with instruction-level parallelism or by hardware thread interleaving with thread-level parallelism.
Hardware simplicity tends to reduce energy per unit of work (as well as chip area), and many modern designs are limited by power use. It also makes sense to perform optimizations at compile time (when they are less latency critical and can be done once rather than each time the code is executed) if the storage and communication cost of additional information is not too expensive (assuming information necessary to perform the optimization is available at compile time [dynamic branch prediction is a classic example of where dynamic information is helpful]).
Well, basically since hardware is optimised with feed forwarding, there has to be no use of explicitly declared software NOPs. But that's not the case.
Though, feed forwarding proves helpful in reducing data hazards, but some hazards cannot be dealt with feed forwarding. It just isn't possible.
Eg.
beq R1,R5,label
instruction 2nd
Here the instruction 2nd will not be fetched until instruction 1 has completed its execution stage and decided whether or not to branch. Until then the 2nd instruction has to be stalled. (stalled for 2 memory cycles). This is done by software by sending out NOPs.
With improvements in technology and hardware optimizations, the beq instruction can complete its execution stage in its register fetch/decode stage by inserting a comparator in the fetch stage itself. Even so, the 2nd instruction will be stalled for(1 memory cycle now). Again NOP is needed.

Median selection in CUDA kernel

I need to compute the median of an array of size p inside a CUDA kernel (in my case, p is small e.g. p = 10). I am using an O(p^2) algorithm for its simplicity, but at the cost of time performance.
Is there a "function" to find the median efficiently that I can call inside a CUDA kernel?
I know I could implement a selection algorithm, but I'm looking for a function and/or tested code.
Thanks!
Here are a few hints:
Use a better selection algorithm: QuickSelect is a faster version of QuickSort for selecting the kth element in an array. For compile-time-constant mask sizes, sorting networks are even faster, thanks to high TLP and a O(log^2 n) critical path. If you only have 8-bit values, you can use a histogram-based approach. This paper describes an implementation that takes constant time per pixel, independent of mask size, which makes it very fast for very large mask sizes. You can parallelize it by using a minimal launch strategy (only run as many threads as you need to keep all SMs at max capacity), tiling the image, and letting threads of the same block cooperate on each kernel histogram.
Sort in registers. For small mask sizes, you can keep the entire array in registers, making median selection with a sorting network much faster. For larger mask sizes, you can use shared memory.
Copy all pixels used by the block to shared memory first, and then copy to thread-local buffers that are also in shared memory.
If you only have a few masks that need to go really fast (such as 3x3 and 5x5), use templates to make them compile time constants. This can speed things up a lot because the compiler can unroll loops and re-order a lot more instructions, possibly improving load batching and other goodies, leading to large speed-ups.
Make sure, your reads are coalesced and aligned.
There are many other optimizations you can do. Make sure, you read through the CUDA documents, especially the Programming Guide and the Best Practices Guide.
When you really want to gun for high performance, don't forget to take a good look at a CUDA profiler, such as the Visual Profiler.
Even in a single thread one can sort the array and pick the value in the middle in O(p*log(p)), which makes O(p^2) look excessive. If you have p threads at your disposal it's also possible to sort the array as fast as O(log(p)), although that may not be the fastest solution for small p. See the top answer here:
Which parallel sorting algorithm has the best average case performance?