Some rpc nodes Binace Smart Chain are now rate limited to 25-30 requests/sec ..I want to ask where to rent unlimited packages request/sec
Related
Gas costs for even a simple contract deployment are astronomical. If I spin up my own node and connect directly to it can I deploy on that node and avoid the gas fees?
Can I avoid gas fees by running my own Ethereum node?
Simple answer: No.
A node accepts the transaction, stores it in its mempool, and relays it to other nodes so that they can also store it in their mempool. There's nothing related to gas costs at this point.
Theoretically you could deploy a contract for "free" by running your own miner. But that's impossible without professional hardware costing very large amounts - many times more expensive than what you'd save on the gas fees.
However, in a block that you mined, you could include a transaction deploying a contract with 0 gas price. This sometimes happens - miners do occasionally put their own 0-priced transactions in their own blocks. But apart from that, no miner would accept your transaction with 0 gas price (or any transaction priced lower than the current market rate), as that wouldn't be profitable for them.
If I were to create my own Ethereum based crypto token named "ExampleCoin" with a supply of 1,000,000,000 and decided to distribute it to users for playing my game, would I need to pay a gas fee each time I give a user some ExampleCoin?
And if I had an in game store where users can make purchases with ExampleCoin, would a gas fee need to be paid in order to send ExampleCoin from the user to the game?
Gas is like gasoline to the Ethereum network; whenever we interact with the blockchain and affect its state, we must pay the fee required to perform the computations and process the transaction [1]. Each action such as storing values, sending tokens, adding integers etc. has associated cost in gas units [2]. The total gas cost for a transaction is multiplied by a gas price [3] to get the gas, or transaction, fee.
The transaction in which the ExampleCoin contract allocates some ExampleCoin tokens to a user, will be initiated by the user who will have to pay the required gas fee. Thus, it is the user who will initiate the transaction which will allocate the tokens to him, and thus he will pay the gas fee.
Similarly, when the user makes purchases with ExampleCoin, he is making a transaction affecting the state of the blockchain and thus incurring gas cost; so, he will have to pay the gas fee.
The bottom line is that whoever makes a transaction will have to pay the required gas fee. In this case, it would be the user, and not your contract, who pays the gas fee.
It is because of the increasing gas prices and thus transaction fees on the Ethereum network that solutions like sidechains, and other blockchains focusing on low transaction fees such as Solana have been developed. Thus, as a smart contract/ dapp developer, one has to comprehensively ascertain the business logic of one's application and decide which network to deploy it on, keeping the end user's experience in mind.
[1] See these explainers on gas and transactions:
https://ethereum.org/en/developers/docs/gas/ https://ethereum.org/en/developers/docs/transactions/
[2] See page 27 of the Yellow Paper for a list of operations and associated gas cost in gas units. For example, the base gas cost for every transaction is 21000 gas units: https://ethereum.github.io/yellowpaper/paper.pdf
[3] This is the amount in ETH we are willing to pay to the miner, per gas unit, as incentive to include our transaction in the next block. The higher the gas price, the more quickly our transaction is picked up by miners and mined.
If this is your private network and you do not want to use the gas mechanism to pay for transactions, then use Quorum - it does not require a transaction fee, and smart contracts are similar to Ethereum.
If you want to use Ethereum in your network, then you will have to come up with a mechanism for automatic distribution and compensation of Eth on user accounts. The simplest option is to give 100,000 Eth to the user's account when registering.
I deployed my smart contract(ERC-721) on truffle (Rinkeby | Ropsten | local node) and again on Remix and I keep getting an average cost of 0.0165 ether. This gas fee seems unrealistic to me, even though my contract is pretty simple.
I finally tried deploying to MAINNET using Truffle and the transactions stopped due to a low gas value. I switched over to REMIX and the new total gas fee is 0.65 ($2500) ether.
Is this a realistic amount to deploy a smart contract? or do I need to change some setting on remix?
Do the testnet's give a good representation of what gas fee will cost on mainnet ?
The amount of gas used from gas limit, not the gas price is going to be consistent between mainnet and testnets as the gas used from gas limit represents the amount of work that needs to be done to process the transaction logic in the EVM. Gas price (how much you pay for a unit of gas used) fluctuates as it is dependent on market economics/game theory, which is going to be very different on a test network vs live network.
References
https://ethereum.org/en/developers/docs/gas/
I'm working on sending transactions from one address to another on the goerli testnet and all transactions so far are not confirming. They have been staying in a pending state: https://goerli.etherscan.io/tx/0x056187763bac9adc8696fa0554c26b2f0e8ac48601dd4e5f03a30536d6597bf0
Did I do something wrong? I see the transaction in the etherscan.io/tx, but do I need some sort of callback handler?
Is this because there are not enough miners on the goerli testnet? Is Kovan the best testnet for ethereum dapp/smart contract development where transactions are being confirmed more often?
Any help is appreciated.
The linked transaction offers gas price of 0.000000002 Gwei (which is 2 wei). Usual current gas price on the Goerli network is 2 Gwei (1 billion times larger).
So it just seems that your sending script incorrectly calculates the decimals for the gas price.
Most miners order transactions by the gas price. So if there were more miners or less pending transactions, there would be a higher probability of this transaction making it to the block. But in the current situation, you need to raise the gas price of your transaction in order to compete with the other pending transactions.
If you want to replace the gas price on this particular transaction, you can send a new one with the same nonce but higher gas fee.
I'm interested in the conceptual topic of creating rights managements systems on the the Ethereum block chain with digital assets represented by an NFT.
I am just reading up on how to write programs that run on Etherium but I have some very basic questions just to get to started.
I read that NFT are created on the Ethereum blockchain. I don't really understand if that is the same block chain on which the currency Ether is maintained? Seems like the ledger will become impossibly large huge if both the every currency transaction and every digital asset and copy thereof that migrates to Ethereum is stored in one single giant ledger and that each miner on the chain has to download the entire ledger to one single machine in order to validate transactions? Have I got big misunderstanding there? I know there is talk about "sharding" in the future, but it seems like that isn't coming very soon.
Cost of running a smart contract on the blockchain? Assuming that the we are talking about the same block chain, from what I can see the price of "Gas" is quite high. I'm reading that the price of ETH transfer from one party to another is 21,000 Gwei, about $0.03 today. Just trying to understand the basics, how much does it cost to create a NFT? And roughly how much does it cosst to execute a simple function on the blockchain (without loops). Let say the equivalent of 5 statement function which takes a few simple params, reads a few blocks, doesn't write to the block chain but just performs some simple math and a few if statements and returns a string? Does that also cost, like, more than penny? Is the conversion to ETH2 switch from proof of work to proof of stake going to bring those costs down by orders of magnitude?
Any good resources or reference on how to write programs which create and manipulate NFTS on Etherium? Most of what I have seen in the bookstores seem to cover financial transactions with Ether.
Yes, it's the same blockchain.
You can see in the stats that full node (stores current state) currently takes about 400 GB and archive node (stores current and historical states as well) takes about 6.6 TB.
My observation is that most web apps using blockchain data don't verify and trust a third-party service running a node (such as Infura). And I believe that most end users or businesses who want/need to verify, usually have the capacity to store 400+ GB and are able to scale.
But if this amount of data is okay or "impossibly large huge", I'll leave that to your decision. :)
Deployment of a token smart contract usually costs between 500k to 3M gas. My estimate is that most token contracts with basic features that were compiled with an optimizer, cost around 1M gas to deploy. With current prices of ~200 Gwei/gas and $1800/ETH, that's about $350. But I remember just few months ago the average gas prices were ~20 and ETH cost $500, so that would be around $10. So yea, the cost of deploying a contract is very volatile.
Simple function that performs validations and transformations in memory is going to cost the base 21k + few hundred gas. (Working with memory data is cheap gas-wise, accessing the storage is much more expensive.) So in current prices around $7, few months ago it could have been $0.25.
As for the question, whether ETH2.0 is going to bring lower gas price: My opinion is that L2 (which should be released earlier than PoS) is going to have some effect on the price since it allows for sidechain transactions (similar to Lightning network on Bitcoin). But this is a development forum, so I'm not not going to dive deeper into price speculations.
I recommend OpenZeppelin docs where they cover their opensource implementations of ERC standards (including ERC-721 NFTs) or googling the topic you're interested in and read articles that catch your eye (at least that's my current approach).
And if you're new to Solidity in general, I recommend at least few chapters from CryptoZombies tutorial. In my opinion, the first few chapters are great and you'll learn a lot, but then the quality slowly fades.