pyspark dataframe to valid json - json

Im trying to convert a dataframe to a valid json format, howeever I have not succeeded yet.
if I do like this:
fullDataset.repartition(1).write.json(f'{mount_point}/eds_ckan', mode='overwrite', ignoreNullFields=False)
I only get row based json like this:
{"col1":"2021-10-09T12:00:00.000Z","col2":336,"col3":0.0}
{"col1":"2021-10-16T20:00:00.000Z","col2":779,"col3":6965.396}
{"col1":"2021-10-17T12:00:00.000Z","col2":350,"col3":0.0}
Does anyone know how to convert it to valid json which is not row based?

Below is the sample example on converting dataframe to valid Json
Try using Collect and then using json.dump
import json
collected_df = df_final.collect()
with open(data_output_file + 'createjson.json', 'w') as outfile:
json.dump(data, outfile)
here are few links with the related discussions you can go through for complete information.
Dataframe to valid JSON
Valid JSON in spark

Related

Convert Json String in Text file to Json file with Python 3

I have gathered around 5000 tweets using Twitter API but mistakenly wrote them into a .txt. I need them to be in .json format instead. I tried several solutions from simply changing the file format from txt to json to 3 hours worth of stackoverflow answers such as this:
import json
f = open("tweets.txt", "r")
content = f.read()
#print(content)
text_file = open("tweets4.json", "w")
text_file.write(content)
text_file.close()
But even this opened like a text string. I also tried to use json.dump() but since the string is already in Json format, it did double encoding and it was full of "\
In short, it looks like this:
Json string in text format
But should look like this (I re ran the code and saved new tweets to a json):
Json format

Writing spark dataframe to ascii JSON

I am attempting to write a spark dataframe as JSON file; this will eventually be written out into MapR JSON DB table.
grp_small.toJSON.write.save("<path>")
This seems to write JSON file in snappy.parquet format. How do I force it to write it as a readable JSON (txt format) ?
You can write dataframe to json which contains each row as readable json in each line.
grp_small.write.json("path to output")
Hope this hepls!

how to save json data into csv using python

[I have json data like this 1]
I wanted to save the json into csv
the out put will be like this ,each tittle will be holding the information in that titile
I hope this gets converted to a comment, but look at Pandas, it can probably do what you want (Pandas json to csv)

Creating a Pandas DataFrame from a CSV file with JSON in it

I have a Postgres database where two columns are jsonb data. I used this command to get a CSV copy of the database: \copy (SELECT * FROM articles) TO articles.csv CSV DELIMITER ‘,’ HEADER
I am using Python 3.6. When I load this CSV file into a Pandas dataframe with read_csv I get what appears to be a doubly encoded string for all the json data:
e.g. articles.iloc[0]['word_count'] gives me:
'"{\\"he\\":8,\\"is\\":8,\\"a\\":26,\\"wealthy\\":1,\\"international\\":2,\\"entrepreneur\\":1,\\"known\\":3,\\"for\\":9,\\"generous\\":1,\\"donations\\":2,\\"to\\":17,\\"his\\":6,\\"alma\\":1,\\"mater\\":1,\\"harvard\\":11,\\"now\\":2,\\"court\\":12,\\"says\\":1,\\"the\\":51,\\"university\\":3,\\"must\\":2,\\"cooperate\\":1,\\"in\\":21,\\"hunt\\":1,\\"assets\\":3,\\"federal\\":2,\\"judge\\":2,\\"boston\\":3,\\"has\\":4,\\"ruled\\":2,\\"that\\":10,\\"provide\\":1,\\"testimony\\":1,\\"and\\":11,\\"produce\\":1,\\"documents\\":3,\\"disclosing\\":1,\\"bank\\":1,\\"accounts\\":1,\\"routing\\":1,\\"numbers\\":1,\\"wire\\":1,\\"transfers\\":1,\\"other\\":2,\\"interbank\\":1,\\"messages\\":1,\\"used\\":1,\\"by\\":11,\\"an\\":6,\\"alumnus\\":1,\\"charles\\":1,\\"c\\":2,\\"spackman\\":19,\\"send\\":1,\\"money\\":2,\\"mr\\":19,\\"hong\\":5,\\"kongbased\\":1,\\"businessman\\":1,\\"leads\\":2,\\"group\\":4,\\"global\\":1,\\"investment\\":1,\\"holding\\":1,\\"company\\":10,\\"with\\":3,\\"billion\\":1,\\"under\\":1,\\"management\\":1,\\"ruling\\":4,\\"places\\":1,\\"ivy\\":1,\\"league\\":1,\\"college\\":1,\\"uncomfortable\\":1,\\"predicament\\":1,\\"of\\":19,\\"revealing\\":1,\\"confidential\\":1,\\"financial\\":1,\\"information\\":3,\\"gleaned\\":1,\\"from\\":2,\\"influential\\":1,\\"benefactor\\":1,\\"no\\":2,\\"small\\":1,\\"donor\\":1,\\"according\\":2,\\"website\\":1,\\"sponsors\\":1,\\"scholarship\\":2,\\"fund\\":1,\\"asian\\":1,\\"students\\":1,\\"at\\":2,\\"harvardasia\\":1,\\"council\\":1,\\"served\\":1,\\"as\\":2,\\"cochairman\\":1,\\"reunion\\":1,\\"gifts\\":1,\\"class\\":1,\\"year\\":1,\\"also\\":2,\\"korean\\":6,\\"name\\":1,\\"yoo\\":1,\\"shin\\":1,\\"choi\\":1,\\"obtained\\":1,\\"undergraduate\\":1,\\"degree\\":1,\\"economics\\":1,\\"spokeswoman\\":1,\\"melodie\\":1,\\"jackson\\":1,\\"said\\":8,\\"would\\":2,\\"not\\":5,\\"comment\\":2,\\"on\\":4,\\"order\\":1,\\"part\\":1,\\"longfought\\":1,\\"quest\\":1,\\"aggrieved\\":1,\\"investor\\":2,\\"sang\\":1,\\"cheol\\":1,\\"woo\\":3,\\"collect\\":2,\\"judgment\\":4,\\"against\\":1,\\"involving\\":1,\\"south\\":4,\\"business\\":3,\\"deal\\":1,\\"case\\":3,\\"could\\":2,\\"have\\":3,\\"furtherreaching\\":1,\\"implications\\":1,\\"douglas\\":1,\\"kellner\\":2,\\"manhattan\\":1,\\"lawyer\\":2,\\"who\\":2,\\"specializes\\":1,\\"recovering\\":1,\\"hidden\\":1,\\"worldwide\\":1,\\"if\\":2,\\"diverted\\":1,\\"funds\\":1,\\"when\\":1,\\"should\\":1,\\"been\\":3,\\"paying\\":1,\\"thats\\":1,\\"fraudulent\\":1,\\"transfer\\":1,\\"they\\":2,\\"sue\\":2,\\"get\\":2,\\"back\\":2,\\"theyd\\":1,\\"be\\":1,\\"entitled\\":1,\\"it\\":4,\\"can\\":1,\\"show\\":1,\\"was\\":6,\\"fraudulently\\":1,\\"transferred\\":1,\\"john\\":1,\\"han\\":1,\\"firm\\":2,\\"kobre\\":1,\\"kim\\":1,\\"which\\":5,\\"handling\\":1,\\"investors\\":1,\\"had\\":3,\\"plans\\":1,\\"unwittingly\\":1,\\"entangled\\":1,\\"dispute\\":1,\\"collection\\":1,\\"effort\\":1,\\"dates\\":1,\\"stock\\":2,\\"collapse\\":2,\\"littauer\\":2,\\"technologies\\":1,\\"ltd\\":1,\\"technology\\":1,\\"seoul\\":1,\\"high\\":2,\\"major\\":1,\\"fled\\":1,\\"korea\\":3,\\"amid\\":1,\\"claims\\":1,\\"price\\":1,\\"manipulation\\":1,\\"departing\\":1,\\"before\\":3,\\"authorities\\":2,\\"arrested\\":1,\\"partner\\":1,\\"later\\":3,\\"insiders\\":1,\\"profited\\":1,\\"selling\\":1,\\"their\\":1,\\"shares\\":1,\\"while\\":2,\\"minority\\":1,\\"shareholders\\":1,\\"including\\":1,\\"suffered\\":1,\\"enormous\\":1,\\"losses\\":1,\\"ordered\\":1,\\"pay\\":1,\\"million\\":2,\\"mushroomed\\":1,\\"because\\":5,\\"accumulating\\":1,\\"interest\\":1,\\"managing\\":1,\\"director\\":1,\\"richard\\":1,\\"lee\\":1,\\"related\\":1,\\"lawsuit\\":1,\\"pending\\":1,\\"kong\\":4,\\"filed\\":1,\\"appeared\\":1,\\"unaware\\":1,\\"until\\":2,\\"just\\":1,\\"overturned\\":1,\\"supreme\\":1,\\"all\\":1,\\"defendants\\":1,\\"except\\":1,\\"upheld\\":1,\\"him\\":1,\\"did\\":2,\\"appear\\":1,\\"defend\\":1,\\"himself\\":1,\\"acknowledging\\":1,\\"fined\\":1,\\"connection\\":1,\\"matter\\":1,\\"maintains\\":1,\\"commit\\":1,\\"offenses\\":1,\\"woos\\":1,\\"lawyers\\":1,\\"argue\\":1,\\"efforts\\":1,\\"hampered\\":1,\\"what\\":1,\\"papers\\":2,\\"called\\":1,\\"mazelike\\":1,\\"network\\":1,\\"offshore\\":1,\\"nominees\\":1,\\"trusts\\":1,\\"many\\":1,\\"are\\":1,\\"managed\\":1,\\"close\\":1,\\"family\\":1,\\"members\\":1,\\"classmates\\":1,\\"example\\":1,\\"estate\\":1,\\"where\\":1,\\"lives\\":1,\\"section\\":1,\\"forbes\\":1,\\"described\\":1,\\"wealthiest\\":1,\\"neighborhood\\":1,\\"earth\\":1,\\"owned\\":2,\\"through\\":1,\\"series\\":1,\\"shell\\":1,\\"companies\\":1,\\"turn\\":3,\\"british\\":1,\\"virgin\\":1,\\"islands\\":1,\\"say\\":1,\\"entered\\":1,\\"feb\\":1,\\"william\\":1,\\"g\\":1,\\"young\\":1,\\"district\\":1,\\"gives\\":1,\\"march\\":1,\\"over\\":2,\\"banking\\":1,\\"orders\\":1,\\"spackmans\\":2,\\"daughter\\":1,\\"claire\\":1,\\"sophomore\\":1,\\"testify\\":1,\\"records\\":1,\\"about\\":1,\\"her\\":1,\\"fathers\\":1,\\"american\\":1,\\"citizen\\":1,\\"permanent\\":1,\\"resident\\":1,\\"well\\":1,\\"partly\\":1,\\"son\\":1,\\"james\\":1,\\"adopted\\":1,\\"americans\\":1,\\"after\\":1,\\"biological\\":1,\\"parents\\":1,\\"died\\":1,\\"during\\":1,\\"war\\":1,\\"advanced\\":1,\\"world\\":1,\\"become\\":1,\\"chief\\":1,\\"prudentials\\":1,\\"insurance\\":1,\\"holdings\\":1,\\"younger\\":1,\\"include\\":1,\\"entertainment\\":1,\\"produced\\":1,\\"science\\":1,\\"fiction\\":1,\\"movie\\":1,\\"snowpiercer\\":1,\\"starring\\":1,\\"tilda\\":1,\\"swinton\\":1,\\"octavia\\":1,\\"spencer\\":1}"'
In order to get a python dictionary from the above string I have to call json.loads(json.loads()) on it. Since I want to convert the whole column to dictionaries I tried articles['word_count'].apply( lambda x: json.loads(json.loads(x)) ) but this gives me an error:
TypeError: the JSON object must be str, bytes or bytearray, not 'float'
How do I fix this? OR am I missing a command when I export to CSV from my database? OR am I missing a command when I call read_csv in Pandas?
Note: I have tried the 'converter' option with read_csv and I get this error: JSONDecodeError: Expecting value: line 1 column 1 (char 0) My function is:
def dec(s):
return json.loads( json.loads(s) )
Use pd.io.json.json_normalize() to convert an entire column of JSON data into a separate DataFrame with the same number of rows:
http://pandas.pydata.org/pandas-docs/version/0.19.0/generated/pandas.io.json.json_normalize.html
For your case it'd be something like this:
pd.io.json.json_normalize(articles.word_count)
You might have to preprocess it if Pandas doesn't understand the escaping in your input data.
Beyond all that, since your data comes from a database, you should consider just loading it directly, without the CSV intermediary. Pandas has functions for this, such as read_sql_query() and read_sql_table().

Saving Pandas DataFrame and meta-data to JSON format

I have a need to save a Pandas DataFrame, along with some metadata to a file in JSON format. (The JSON format is a requirement.)
Background
A) I can successfully read/write my rather large Pandas Dataframe from/to JSON using DataFrame.to_json() and DataFrame.from_json(). No problems.
B) I have no problems saving my metadata (dict) to JSON using json.dump()/json.load()
My first attempt
Since Pandas does not support DataFrame metadata directly, my first thought was to
top_level_dict = {}
top_level_dict['data'] = df.to_dict()
top_level_dict['metadata'] = {'some':'stuff'}
json.dump(top_level_dict, fp)
Failure modes
C) I have found that even the simplified case of
df_dict = df.to_dict()
json.dump(df_dict, fp)
fails with:
TypeError: key (u'US', 112, 5, 80, 'wl') is not a string
D) Investigating, I've found that the complement also fails.
df.to_json(fp)
json.load(fp)
fails with
384 raise ValueError("No JSON object could be decoded")
ValueError: Expecting : delimiter: line 1 column 17 (char 16)
So it appears that Pandas JSON format and the Python's JSON library are not compatible.
My first thought is to chase down a way to modify the df.to_dict() output of C to make it amenable to Python's JSON library, but I keep hearing "If you're struggling to do something in Python, you're probably doing it wrong." in my head.
Question
What is the cannonical/recommended method for adding metadata to a Pandas DataFrame and storing to a JSON-formatted file?
Python 2.7.10
Pandas 0.17
Edit 1:
While trying out Evan Wright's great answer, I found the source of my problems: Pandas (as of 0.17) does not like saving Multi-Indexed DataFrames to JSON. The library I had created to save my (Multi-Indexed) DataFrames is quietly performing a df.reset_index() before calling DataFrame.to_json(). My newer code was not. So it was DataFrame.to_json() burping on the MultiIndex.
Lesson: Read the documentation kids, even when it's your own documentation.
Edit 2:
If you need to store both the DataFrame and the metadata in a single JSON object, see my answer below.
You should be able to just put the data on separate lines.
Writing:
f = open('test.json', 'w')
df.to_json(f)
print >> f
json.dump(metadata, f)
Reading:
f = open('test.json')
df = pd.read_json(next(f))
metdata = json.loads(next(f))
In my question, I erroneously stated that I needed the JSON in a file. In that situation, Evan Wright's answer is my preferred solution.
In my case, I actually need to store the JSON output as a single "blob" in a database, so my dictionary-wrangling approach appears to be necessary.
If you similarly need to store the data and metadata in a single JSON blob, the following code will work:
top_level_dict = {}
top_level_dict['data'] = df.to_dict()
top_level_dict['metadata'] = {'some':'stuff'}
with open(FILENAME, 'w') as outfile:
json.dump(top_level_dict, outfile)
Just make sure DataFrame is singly-indexed. If it's Multi-Indexed, reset the index (i.e. df.reset_index()) before doing the above.
Reading the data back in:
with open(FILENAME, 'r') as infile:
top_level_dict = json.load(infile)
df_as_dict = top_level_dict.pop('data', {})
df = pandas.DataFrame().as_dict(df_as_dict)
meta = top_level_dict['metadata']
At this point, you'll need to re-create your Multi-Index (if applicable)