Vertical label to the left of table with KableExtra HTML - html

I'm creating a critical F-table and I need to assign a vertical text lable to the left of my table ("Degrees of freedom denominator"), as a 'side header' for my table instead of the columnname "df". Does anyone know how to do this?
library(knitr)
library(kableExtra)
library(latex2exp)
library(tidyverse)
# F Table
df_num = c(1:10, 20, 30, 40, 50)
df_denom = c(1:10, 12, 15, 20, 30, 40, 50, 60, 120, 200)
F.table = tibble(
df_num1 = qf(.99, df1=1, df2=df_denom),
df_num2 = qf(.99, df1=2, df2=df_denom),
df_num3 = qf(.99, df1=3, df2=df_denom),
df_num4 = qf(.99, df1=4, df2=df_denom),
df_num5 = qf(.99, df1=5, df2=df_denom),
df_num6 = qf(.99, df1=6, df2=df_denom),
df_num7 = qf(.99, df1=7, df2=df_denom),
df_num8 = qf(.99, df1=8, df2=df_denom),
df_num9 = qf(.99, df1=9, df2=df_denom),
df_num10 = qf(.99, df1=10, df2=df_denom),
df_num20 = qf(.99, df1=20, df2=df_denom),
df_num30 = qf(.99, df1=30, df2=df_denom),
df_num40 = qf(.99, df1=40, df2=df_denom),
df_num50 = qf(.99, df1=50, df2=df_denom)
)
F.table = F.table %>%
mutate(df = df_denom) %>%
select(df, everything())
kable(F.table,
booktabs = TRUE,
col.names = c("df", 1:10, 20, 30, 40, 50),
escape = FALSE,
caption = "$F$-verdeling met kritieke waarden voor $\\alpha = .01$",
linesep = "",
align = c('r'),
digits=2) %>%
kable_styling(font_size = 8) %>%
column_spec(1, bold = T, border_right = T) %>%
add_header_above(c(" " = 1, "Degrees of freedom numerator (noemer)" = 14)) %>%
row_spec(0, extra_css = "border-bottom: 1px solid")

Related

R: Forcing Plotly to Save "Full Sized" Plots?

I am working with the R programming language. I am following the tutorial here :
I was able to make the following plot:
library(dplyr)
library(plotly)
data <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv")
data_2007 <- data[which(data$year == 2007),]
data_2007 <- data_2007[order(data_2007$continent, data_2007$country),]
slope <- 2.666051223553066e-05
data_2007$size <- sqrt(data_2007$pop * slope)
colors <- c('#4AC6B7', '#1972A4', '#965F8A', '#FF7070', '#C61951')
fig <- plot_ly(data_2007, x = ~gdpPercap, y = ~lifeExp, color = ~continent, size = ~size, colors = colors,
type = 'scatter', mode = 'markers', sizes = c(min(data_2007$size), max(data_2007$size)),
marker = list(symbol = 'circle', sizemode = 'diameter',
line = list(width = 2, color = '#FFFFFF')),
text = ~paste('Country:', country, '<br>Life Expectancy:', lifeExp, '<br>GDP:', gdpPercap,
'<br>Pop.:', pop))
fig <- fig %>% layout(title = 'Life Expectancy v. Per Capita GDP, 2007',
xaxis = list(title = 'GDP per capita (2000 dollars)',
gridcolor = 'rgb(255, 255, 255)',
range = c(2.003297660701705, 5.191505530708712),
type = 'log',
zerolinewidth = 1,
ticklen = 5,
gridwidth = 2),
yaxis = list(title = 'Life Expectancy (years)',
gridcolor = 'rgb(255, 255, 255)',
range = c(36.12621671352166, 91.72921793264332),
zerolinewidth = 1,
ticklen = 5,
gridwith = 2),
paper_bgcolor = 'rgb(243, 243, 243)',
plot_bgcolor = 'rgb(243, 243, 243)')
Then, I tried saving the file:
htmltools::save_html(html = fig, file = "file.html")
The problem is, that this plot is saving in a "stretched" format:
Is there any way that I can "force" R/plotly to save a "full sized" plot instead of this "stretched" version?
Thanks!
You could specify the width and height in plot_ly like this:
library(dplyr)
library(plotly)
data <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv")
data_2007 <- data[which(data$year == 2007),]
data_2007 <- data_2007[order(data_2007$continent, data_2007$country),]
slope <- 2.666051223553066e-05
data_2007$size <- sqrt(data_2007$pop * slope)
colors <- c('#4AC6B7', '#1972A4', '#965F8A', '#FF7070', '#C61951')
fig <- plot_ly(data_2007, x = ~gdpPercap, y = ~lifeExp, color = ~continent, size = ~size, colors = colors,
type = 'scatter', mode = 'markers', sizes = c(min(data_2007$size), max(data_2007$size)),
marker = list(symbol = 'circle', sizemode = 'diameter',
line = list(width = 2, color = '#FFFFFF')),
text = ~paste('Country:', country, '<br>Life Expectancy:', lifeExp, '<br>GDP:', gdpPercap,
'<br>Pop.:', pop),
autosize = F, width = 1200, height = 600)
fig <- fig %>% layout(title = 'Life Expectancy v. Per Capita GDP, 2007',
xaxis = list(title = 'GDP per capita (2000 dollars)',
gridcolor = 'rgb(255, 255, 255)',
range = c(2.003297660701705, 5.191505530708712),
type = 'log',
zerolinewidth = 1,
ticklen = 5,
gridwidth = 2),
yaxis = list(title = 'Life Expectancy (years)',
gridcolor = 'rgb(255, 255, 255)',
range = c(36.12621671352166, 91.72921793264332),
zerolinewidth = 1,
ticklen = 5,
gridwith = 2),
paper_bgcolor = 'rgb(243, 243, 243)',
plot_bgcolor = 'rgb(243, 243, 243)')
htmltools::save_html(html = fig, file = "file.html")
Created on 2022-08-31 with reprex v2.0.2
Output:
You can change the size to whatever you want.

Error while exporting graph in html format in R

I got this error when trying to plot a graph with plotly and export it using saveWidget: 'options' must be a fully named list, or have no names (NULL). Here is how I plot and save my graph:
Age <-c(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183)
Pertubation <- c(0.002967936,-0.794788368,-1.561544673,-2.938300977,-2.956057282,-3.724813586,-3.84656989,-4.000326195,-3.491082499,-3.705838803,-3.008595108,-3.439351412,-2.518107716,-2.108864021,-1.892620325,-2.175376629,-2.547132934,-2.694889238,-3.985645543,-2.702401847,-3.203158151,-3.238914456,-2.60867076,-2.564427064,-3.254183369,-1.973939673,-0.731695977,-0.625452282,-0.966208586,-0.811964891,-0.018721195,0.320522501,-0.227233804,-0.046990108,-0.820746412,-0.846502717,1.067740979,1.470984675,1.00222837,0.448472066,1.139715762,1.275959457,0.989203153,0.904446848,0.607690544,0.20693424,1.084177935,1.114421631,0.625665327,0.292909022,-0.833847282,-2.208603586,-3.397359891,-4.339116195,-4.950872499,-5.518628804,-6.992385108,-7.023141413,-8.193897717,-8.580654021,-9.428410326,-10.92316663,-11.37392293,-12.21167924,-12.77643554,-13.14219185,-13.67394815,-14.19370446,-14.16046076,-15.29121706,-16.06197337,-16.11472967,-16.29348598,-17.62424228,-17.79699859,-19.42675489,-19.6625112,-20.3642675,-21.4460238,-22.05378011,-23.87553641,-24.06129272,-25.00604902,-25.80180533,-26.77656163,-27.40431793,-28.86407424,-29.45483054,-29.37758685,-30.48534315,-30.07209946,-29.86985576,-29.82561207,-30.46936837,-30.56412467,-30.24788098,-29.40463728,-29.76939359,-29.11314989,-29.0989062,-29.2466625,-29.1654188,-29.28217511,-29.11493141,-28.44568772,-28.65344402,-28.43520033,-28.71795663,-29.06871293,-29.66546924,-28.39422554,-29.68398185,-29.73973815,-29.34349446,-29.45325076)
temp <- cbind(Age, Pertubation)
Pertubation_graph <- plot_ly(data.frame(temp), x = ~Age, y = ~res,
cex.main = 1.5, cex.lab = 1.2, axes = F) %>%
layout(title = paste( "Pig ID:", i, ", Lambda =", lambda, "\nDifference between CFI and TTC"),mtext("Percentage of difference: CFI - TTC (%)", side=4, line = 3, cex = 1.2, col= "blue"), plot_bgcolor = "fffff", xaxis = list(title = 'Age (d)'),
yaxis = list(title = 'Amount of difference: CFI - TTC (kg)'),type = "p", pch = 10, cex = 0.5,
ylim = c(min(B$dif.CFI, res), max(B$dif.CFI, res)), cex.main = 1.5, cex.lab = 1.2, axes = F)
Pertubation_graph <- Pertubation_graph %>% layout(axis(1, at= seq(dif$eval_day[1],dif$eval_day[length(dif$eval_day)], by = 5), cex.axis = 1.1),
axis(2, at=, cex.axis = 1.1),
axis(4, at=, cex.axis = 1.1, col.axis = "blue", col = "blue"),
abline(crit1,0, col = "red", lty = 2) ,
abline(0,0, col = "red"))
saveWidget(ggplotly(Pertubation_graph), file=paste0("C:/Users/Kevin Le/PycharmProjects/Pig Data Black Box/Graphs/Step3_graphs/", idc, ".", ID[idc], ".html"))
Can anyone help me out? Thanks everyone in advance.
The dif data table is in this link: https://docs.google.com/spreadsheets/d/1-Xy0ct9GaWU0VLmpgbBA3CA8RLSffLPKlJ-P1bvrT5A/edit?usp=sharing

Plot and table in one figure in R markdown for HTML output

I'm working in Rbookdown and I want to place a plot and a table in one figure, how can I achieve that? Below is the code i used so far. Can you help?
```{r echo=FALSE, message=FALSE, warning=FALSE, fig.height = 3.5, out.width = '70%', fig.align = "center"}
library(knitr)
library(kableExtra)
library(tidyverse)
library(latex2exp)
options(scipen=999)
mu = 0
sigma = 1
x = 1
# draw normal distribution
range = seq(mu - 4*sigma, mu + 4*sigma, 0.01)
y = dnorm(range, mu, sigma)
plot(range, y,
main = "Standard Normal Distribution", xlab = "Z-score", ylab = " ",
type = 'l', ylim = c(0, max(y) + 0.01), axes = FALSE)
axis(1, at = seq(mu - 4*sigma, mu + 4*sigma, sigma))
# Add area to the left of x
cord.a = c(0, seq(min(range), x, 0.01))
cord.b = c(dnorm(seq(min(range), x, 0.01), mu, sigma), 0)
polygon(cord.a, cord.b, col = "#61a5ff")
text(x = 1.1, y = -.06, TeX('$z = 1.00$'), cex = .8, xpd=NA)
text(x = 0, y = .15, TeX('$p = .8413$'), cex = .8, xpd=NA)
# Create standard normal table
options(digits = 4)
u=seq(0,3.09,by=0.01)
p=pnorm(u)
m=matrix(p,ncol=10,byrow=TRUE)
df.m = as.data.frame(m)
z.values = c("**0.0**", "**0.1**", "**0.2**", "**0.3**", "**0.4**", "**0.5**", "**0.6**",
"**0.7**", "**0.8**", "**0.9**", "**1.0**", "**1.1**", "**1.2**", "**1.3**",
"**1.4**", "**1.5**", "**1.6**", "**1.7**", "**1.8**", "**1.9**","**2.0**",
"**2.1**", "**2.2**", "**2.3**", "**2.4**", "**2.5**", "**2.6**", "**2.7**",
"**2.8**", "**2.9**", "**3.0**")
df.z.values = as.data.frame(z.values)
new.m = df.z.values %>%
bind_cols(df.m)
kable(new.m,
booktabs = TRUE,
col.names = c("$Z$", "0.00","0.01", "0.02", "0.03", "0.04",
"0.05", "0.06", "0.07", "0.08", "0.09"),
escape = FALSE,
caption = "Standaard Normaalverdeling",
linesep = "",
align = c('r')) %>%
kable_styling(font_size = 10)
Try this solution:
```{r echo=FALSE, message=FALSE, warning=FALSE, include = FALSE}
library(kableExtra)
#make and save our table into working directory
table1 <- head(mtcars[1:5]) %>%
kbl() %>%
kable_styling(full_width = F) %>%
save_kable("tab_kbl.png")
#make and save our plot into working directory
png('norm_pl.png')
plot(rnorm(10))
dev.off()
```
```{r,echo=FALSE, message=FALSE, warning=FALSE, fig.cap="My image", fig.align = "center"}
library(cowplot)
#combine our images in the one
img1 <- ggdraw() + draw_image("norm_pl.png", scale = 1)
img2 <- ggdraw() + draw_image("tab_kbl.png", scale = 1)
plot_grid(img1, img2)
```
An another variant
```{r, fig.align='center', fig.cap="My beautiful image"}
library(gridExtra)
library(grid)
library(cowplot)
t1 <- tableGrob(head(mtcars[1:5]), theme = ttheme_minimal())
p2 <- ggplot(mtcars, aes(cyl, mpg)) +
geom_point()
plot_grid(t1, p2, ncol = 2, rel_widths = c(2,1))
```

Difference in Computation Speed and Results Between MLR and MLR3

I don't get similar results when I use the same data and models using mlr and mlr3. Also I find mlr runs at least 20-fold faster. I used lung data from survival and I was able to replicate the difference in computation speed and results since I can't share my data.
mlr was completed in 1 min with C-index generally low compared to mlr3 that took 21 min to complete with C-index being much higher despite using same data, same preprocessing, same model and setting seed.
library(tidyverse)
library(tidymodels)
library(PKPDmisc)
library(mlr)
library(parallelMap)
library(survival)
# Data and Data Splitting
data = as_tibble(lung) %>%
mutate(status = if_else(status==1, 0, 1),
sex = factor(sex, levels = c(1:2), labels = c("male", "female")),
ph.ecog = factor(ph.ecog))
na <- sample(1:228, 228*0.1)
data$sex[na] <- NA
data$ph.ecog[na]<- NA
set.seed(123)
split <- data %>% initial_split(prop = 0.8, strata = status)
train <- split %>% training()
test <- split %>% testing()
# Task
task = makeSurvTask(id = "Survival", data = train, target = c("time", "status"))
# Resample
# For model assessment before external validation on test data
set.seed(123)
outer_cv = makeResampleDesc("CV", iter=4, stratify.cols = c("status")) %>%
makeResampleInstance(task)
# For feature selection and parameter tuning
set.seed(123)
inner_cv = makeResampleDesc("CV", iter=4, stratify.cols = c("status"))
# Learners
cox1 = makeLearner(id = "COX1", "surv.coxph") %>%
makeImputeWrapper(classes = list(factor = imputeMode(), numeric = imputeMedian()),
# Create dummy variable for factor features
dummy.classes = "factor") %>%
makePreprocWrapperCaret(ppc.center = TRUE, ppc.scale = TRUE) %>%
makeFeatSelWrapper(resampling = inner_cv, show.info = TRUE,
control = makeFeatSelControlSequential(method = "sfs"))
cox_lasso = makeLearner(id = "COX LASSO", "surv.glmnet") %>%
makeImputeWrapper(classes = list(factor = imputeMode(), numeric = imputeMedian()),
# Create dummy variable for factor features
dummy.classes = "factor") %>%
# Normalize numeric features
makePreprocWrapperCaret(ppc.center = TRUE, ppc.scale = TRUE) %>%
makeTuneWrapper(resampling = inner_cv, show.info = TRUE,
par.set = makeParamSet(makeNumericParam("lambda",lower = -3, upper = 0,
trafo = function(x) 10^x)),
control = makeTuneControlGrid(resolution = 10L))
cox_net = makeLearner(id = "COX NET", "surv.glmnet") %>%
makeImputeWrapper(classes = list(factor = imputeMode(), numeric = imputeMedian()),
# Create dummy variable for factor features
dummy.classes = "factor") %>%
# Normalize numeric features
makePreprocWrapperCaret(ppc.center = TRUE, ppc.scale = TRUE) %>%
makeTuneWrapper(resampling = inner_cv, show.info = TRUE,
par.set = makeParamSet(makeNumericParam("alpha", lower = 0, upper = 1,
trafo = function(x) round(x,2)),
makeNumericParam("lambda",lower = -3, upper = 1,
trafo = function(x) 10^x)),
control = makeTuneControlGrid(resolution = 10L))
# Benchmark
# parallelStartSocket(4)
start_time <- Sys.time()
set.seed(123)
mlr_bmr = benchmark(learners = list(cox1, cox_lasso, cox_net),
tasks = task,
resamplings = outer_cv,
keep.extract= TRUE,
models = TRUE)
end_time <- Sys.time()
mlr_time = end_time - start_time
# parallelStop()
mlr_res <- getBMRPerformances(mlr_bmr, as.df = TRUE) %>%
select(Learner = learner.id, Task = task.id, Cindex = cindex) %>%
mutate(Color_Package = "mlr",
Learner = word(str_replace(Learner, "\\.", " "), 1, -2))
##################################################################
library(mlr3verse)
# Task
task2 = TaskSurv$new(id = "Survival2", backend = train, time = "time", event = "status")
task2$col_roles$stratum = c("status")
# Resmaple
set.seed(123)
outer_cv2 = rsmp("cv", folds = 4)$instantiate(task2)
# For feature selection and parameter tuning
set.seed(123)
inner_cv2 = rsmp("cv", folds = 4)
# Learners
preproc = po("imputemedian", affect_columns = selector_type("numeric")) %>>%
po("imputemode", affect_columns = selector_type("factor")) %>>%
po("scale") %>>%
po("encode")
cox2 = AutoFSelector$new(learner = as_learner(preproc %>>%
lrn("surv.coxph")),
resampling = inner_cv2,
measure = msr("surv.cindex"),
terminator = trm("none"), # need to increase later
fselector = fs("sequential", strategy = "sfs")) # sfs is the default
cox2$id = "COX1"
cox_lasso2 = AutoTuner$new(learner = as_learner(preproc %>>%
lrn("surv.glmnet",
lambda = to_tune(p_dbl(lower = -3, upper = 0,
trafo = function(x) 10^x)))),
resampling = inner_cv2,
measure = msr("surv.cindex"),
terminator = trm("none"),
tuner = tnr("grid_search", resolution = 10))
cox_lasso2$id = "COX LASSO"
cox_net2 = AutoTuner$new(learner = as_learner(preproc %>>%
lrn("surv.glmnet",
alpha = to_tune(p_dbl(lower = 0, upper = 1)),
lambda = to_tune(p_dbl(lower = -3, upper = 1,
trafo = function(x) 10^x)))),
resampling = inner_cv2,
measure = msr("surv.cindex"),
terminator = trm("none"),
tuner = tnr("grid_search", resolution = 10))
cox_net2$id = "COX NET"
# Benchmark
desgin = benchmark_grid(tasks = task2,
learners = c(cox2, cox_lasso2, cox_net2),
resamplings = outer_cv2)
# future::plan("multisession")
# Error: Output type of PipeOp select during training (Task) incompatible with input type of PipeOp surv.coxph (TaskSurv)
start_time <- Sys.time()
set.seed(123)
mlr3_bmr = mlr3::benchmark(desgin)
end_time <- Sys.time()
mlr3_time = end_time - start_time
mlr3_res <- as.data.table(mlr3_bmr$score()) %>%
select(Task=task_id, Learner=learner_id, Cindex=surv.harrell_c) %>%
mutate(Color_Package = "mlr3")
mlr_res %>%
bind_rows(mlr3_res) %>%
ggplot(aes(Learner, Cindex, fill= Color_Package )) +
geom_boxplot(position=position_dodge(.8)) +
stat_summary(fun= mean, geom = "point", aes(group = Color_Package ),
position=position_dodge(.8), size = 3) +
labs(x="", y = " C-Index") +
theme_bw() + base_theme() + theme(legend.position = "top")

Bubble label with googlevis

I want to hide label above bubble in my chart, what argument i have to add ?
Here is my script:
VehiculeFunction <- function(data, gamme, absciss, ordinate, label){
if(absciss == "GMF.24"){
my.data <- data[data$RANG_NITG_PROJET_K %in% c(1, 2, 3),]
} else if(absciss == "Ratio.K") {
my.data <- data[data$RANG_NITG_PROJET_C %in% c(1, 2, 3),]
}
my.data2 <- my.data[my.data$GAMME == gamme,]
ma.col = rgb(red = 0.1,blue = 1,green = 0.1, alpha = 0.2)
X <- my.data2[[absciss]]
Y <- my.data2[[ordinate]]
Z <- my.data2[[label]]
PROJET <- my.data2$PROJET
df <- data.frame(X,Y,Z,PROJET)
plot(gvisBubbleChart(df, idvar = "Z", xvar = "X", yvar = "Y", sizevar = "Y", colorvar = "PROJET", options=list(width=1500, height=1500 ),
bubble="{textStyle:{color: 'none', fontName:
<global-font-name>, fontSize:
<global-font-size>}}"))
}
VehiculeFunction(data.vehicule, gamme = "M1", "GMF.24", "Cout.24", "NITG")