How do I get the b-complement of 193 for b = 5? - binary

So I am supposed to find the b-complement for 193 given that b = 5 and the number of digits allowed is n = 6.
Now I think I am a bit confused regarding the b-complement in general.
Is it that whenever b is odd, just like in the case we have here, you are supposed to subtract 1 from the base and calculate the complement with the result?
If that's the case, you would calculate the 4-complement of 193, right?
But do I then also subtract the then found out number from 444444 or still 555555?

Related

How many unique conditions can be defined using only two on and off mode switches? [duplicate]

For example, if n=9, then how many different values can be represented in 9 binary digits (bits)?
My thinking is that if I set each of those 9 bits to 1, I will make the highest number possible that those 9 digits are able to represent. Therefore, the highest value is 1 1111 1111 which equals 511 in decimal. I conclude that, therefore, 9 digits of binary can represent 511 different values.
Is my thought process correct? If not, could someone kindly explain what I'm missing? How can I generalize it to n bits?
29 = 512 values, because that's how many combinations of zeroes and ones you can have.
What those values represent however will depend on the system you are using. If it's an unsigned integer, you will have:
000000000 = 0 (min)
000000001 = 1
...
111111110 = 510
111111111 = 511 (max)
In two's complement, which is commonly used to represent integers in binary, you'll have:
000000000 = 0
000000001 = 1
...
011111110 = 254
011111111 = 255 (max)
100000000 = -256 (min) <- yay integer overflow
100000001 = -255
...
111111110 = -2
111111111 = -1
In general, with k bits you can represent 2k values. Their range will depend on the system you are using:
Unsigned: 0 to 2k-1
Signed: -2k-1 to 2k-1-1
What you're missing: Zero is a value
A better way to solve it is to start small.
Let's start with 1 bit. Which can either be 1 or 0. That's 2 values, or 10 in binary.
Now 2 bits, which can either be 00, 01, 10 or 11 That's 4 values, or 100 in binary... See the pattern?
Okay, since it already "leaked": You're missing zero, so the correct answer is 512 (511 is the greatest one, but it's 0 to 511, not 1 to 511).
By the way, an good followup exercise would be to generalize this:
How many different values can be represented in n binary digits (bits)?
Without wanting to give you the answer here is the logic.
You have 2 possible values in each digit. you have 9 of them.
like in base 10 where you have 10 different values by digit say you have 2 of them (which makes from 0 to 99) : 0 to 99 makes 100 numbers. if you do the calcul you have an exponential function
base^numberOfDigits:
10^2 = 100 ;
2^9 = 512
There's an easier way to think about this. Start with 1 bit. This can obviously represent 2 values (0 or 1). What happens when we add a bit? We can now represent twice as many values: the values we could represent before with a 0 appended and the values we could represent before with a 1 appended.
So the the number of values we can represent with n bits is just 2^n (2 to the power n)
The thing you are missing is which encoding scheme is being used. There are different ways to encode binary numbers. Look into signed number representations. For 9 bits, the ranges and the amount of numbers that can be represented will differ depending on the system used.

Finding Reccurring Number Combinations in Column of Numbers

I have searched and found discussions and solutions to similar problems, but not quite or as complex as I'm trying to figure out.
I have an access table which consists of two columns Draw Number and Number Drawn as shown below. Draw Number is repeated 20 times, to correspond to the 20 numbers that are drawn in each particular draw.
I'm trying to figure a way to determine the most frequent occurring combination of numbers (5 numbers) for all of the draws in each of the 20 number sets. So for instance, 12341 occurs n x, 12342 occurs nx, 12343 occurs n x, etc.
I've created parameter queries which allow me to search for different number combinations from 2 to 10 numbers, and they work OK returning the number of occurrences of a combination of numbers that I input through a simple UI. But the goal is to figure out pragmatically what the optimum combination of numbers.
Hope this makes sense. And by the way, there are 36 million or so rows in the table. The para queries work quite well however; it takes just over a second to return results for each number added. So, query two numbers = 2 second wait, three numbers = 3 second wait, etc.
I've been thinking about a loop of some type but don't know how to get started? Processing time isn't an issue; can take a day if required!
This is written in VBA and has an assortment of queries, temp tables, etc to get the job done.
The text says Access, but the tags say MySql, which is it? – RBarryYoung 21 hours ago
This part confuses me: I'm trying to figure a way to determine the most frequent occurring combination of numbers (5 numbers) for all of the draws in each of the 20 number sets. So for instance, 12341 occurs n x, 12342 occurs nx, 12343 occurs n x, etc. – Newd 21 hours ago
^What do you mean five numbers? No where in your sample data do I see 12341. Please explain using the data you have, and give expected results using that data. – McAdam331 21 hours ago
drosberg - clarification:
thanks for the response. It is an Access application, but as a first-time poster Stackoverflow recommends tags?
By five numbers I mean the most frequently occurring group of five numbers (I used five as an example, could be groups of 2 to 10 numbers) which occur in each draw, where a draw consists of 20 drawn numbers from a total of 80 numbers. So the data that I posted was intended as an example. The sample provided only has 50, 51 in common. I can plug 50 and 51 into the parameter query and it will tell me that this combination occurs 60,000 times (or whatever), but perhaps 50 and 57 occurs 65,000 times.
If i was to do this manually, and assuming I'm looking for the most frequent 5 number combination I would enter the following in the parameter query: 1,2,3,4,1 group = 30,000 occurrences 1,2,3,4,2 group = 31,000 occurrences 1,2,3,4,3 group = 31,050 occurrences 1,2,3,4,4 group = 29,050 occurrences etc........... etc...........
but I would have to do this for every combination of 5 numbers that can be derived from the numbers 1 thru 80. I'm hoping to have program do the work!!
thanks
don
DRAW NUMBER NUMBER DRAWN
1 1
1 28
1 19
1 3
1 38
1 46
1 43
1 29
1 13
1 22
1 20
1 11
1 50
1 51
1 53
1 54
1 57
1 64
1 76
1 78
2 29
2 14
2 2
2 1
2 35
2 40
2 39
2 30
2 10
2 27
2 21
2 6
2 42
2 50
2 51
2 53
2 54
2 61
2 65
2 69
I wrote a post a while ago about generating permutations with and without repetition using Excel. Perhaps you can use it.
https://michiel.wordpress.com/2015/03/29/permutations-with-repetition-using-excel/
Here's how it works. I am using strings, but you can easily modify that for numbers (since you say you need 5).
You can use the MID function to grab a single char from a string, and generate permutations from it.
=MID(Pattern,MOD([N]/[P],Length)+1,1)
N revers to the column N
P refers to the horizontal row (1,4,16). You can generate these with a formula like =4^.
After putting in the code, you can make a list of all permutations in Excel and in the cell next to it generate a sql query that you can perform as well from VBA.
Example: Looking up Access database in Excel
Or find a commercial tool like http://thingiequery.com/
I don't know if there's any open source tools for it.
I'm thinking that you should consider:
Say there are 100 balls.
Setting up a table to have one row for each "Draw number" with 100 columns one for every possible number each column has type boolean.
When you look to see which draws had number 23 you just add a
WHERE Column23 = true.
For numbers 23 and 56
WHERE Column23 = true AND Column56 = true
This should massivel simplify and speed up your SQL.
You set up a table with every possible combination of numbers.
You run SQL to find the counts.
Harvey

Selecting rows if the total sum of a row is equal to X

I have a table that holds items and their "weight" and it looks like this:
items
-----
id weight
---------- ----------
1 1
2 5
3 2
4 9
5 8
6 4
7 1
8 2
What I'm trying to get is a group where the sum(weight) is exactly X, while honouring the order in which were inserted.
For example, if I were looking for X = 3, this should return:
id weight
---------- ----------
1 1
3 2
Even though the sum of ids 7 and 8 is 3 as well.
Or if I were looking for X = 7 should return
id weight
---------- ----------
2 5
3 2
Although the sum of the ids 1, 3 and 6 also sums 7.
I'm kind of lost in this problem and haven't been able to come up with a query that does at least something similar, but thinking this problem through, it might get extremely complex for the RDBMS to handle. Could this be done with a query? if not, what's the best way I can query the database to get the minimum amount of data to work with?
Edit: As Twelfth says, I need to return the sum, regardless of the amount of rows it returns, so if I were to ask for X = 20, I should get:
id weight
---------- ----------
1 1
3 2
4 9
5 8
This could turn out to be very difficult in sql. What you're attempting to do is solve the knapsack problem, which is non-trivial.
The knapsack problem is interesting from the perspective of computer science for many reasons:
The decision problem form of the knapsack problem (Can a value of at least V be achieved without exceeding the weight W?) is NP-complete, thus there is no possible algorithm both correct and fast (polynomial-time) on all cases, unless P=NP.
While the decision problem is NP-complete, the optimization problem is NP-hard, its resolution is at least as difficult as the decision problem, and there is no known polynomial algorithm which can tell, given a solution, whether it is optimal (which would mean that there is no solution with a larger, thus solving the decision problem NP-complete).
There is a pseudo-polynomial time algorithm using dynamic programming.
There is a fully polynomial-time approximation scheme, which uses the pseudo-polynomial time algorithm as a subroutine, described below.
Many cases that arise in practice, and "random instances" from some distributions, can nonetheless be solved exactly.

How many values can be represented with n bits?

For example, if n=9, then how many different values can be represented in 9 binary digits (bits)?
My thinking is that if I set each of those 9 bits to 1, I will make the highest number possible that those 9 digits are able to represent. Therefore, the highest value is 1 1111 1111 which equals 511 in decimal. I conclude that, therefore, 9 digits of binary can represent 511 different values.
Is my thought process correct? If not, could someone kindly explain what I'm missing? How can I generalize it to n bits?
29 = 512 values, because that's how many combinations of zeroes and ones you can have.
What those values represent however will depend on the system you are using. If it's an unsigned integer, you will have:
000000000 = 0 (min)
000000001 = 1
...
111111110 = 510
111111111 = 511 (max)
In two's complement, which is commonly used to represent integers in binary, you'll have:
000000000 = 0
000000001 = 1
...
011111110 = 254
011111111 = 255 (max)
100000000 = -256 (min) <- yay integer overflow
100000001 = -255
...
111111110 = -2
111111111 = -1
In general, with k bits you can represent 2k values. Their range will depend on the system you are using:
Unsigned: 0 to 2k-1
Signed: -2k-1 to 2k-1-1
What you're missing: Zero is a value
A better way to solve it is to start small.
Let's start with 1 bit. Which can either be 1 or 0. That's 2 values, or 10 in binary.
Now 2 bits, which can either be 00, 01, 10 or 11 That's 4 values, or 100 in binary... See the pattern?
Okay, since it already "leaked": You're missing zero, so the correct answer is 512 (511 is the greatest one, but it's 0 to 511, not 1 to 511).
By the way, an good followup exercise would be to generalize this:
How many different values can be represented in n binary digits (bits)?
Without wanting to give you the answer here is the logic.
You have 2 possible values in each digit. you have 9 of them.
like in base 10 where you have 10 different values by digit say you have 2 of them (which makes from 0 to 99) : 0 to 99 makes 100 numbers. if you do the calcul you have an exponential function
base^numberOfDigits:
10^2 = 100 ;
2^9 = 512
There's an easier way to think about this. Start with 1 bit. This can obviously represent 2 values (0 or 1). What happens when we add a bit? We can now represent twice as many values: the values we could represent before with a 0 appended and the values we could represent before with a 1 appended.
So the the number of values we can represent with n bits is just 2^n (2 to the power n)
The thing you are missing is which encoding scheme is being used. There are different ways to encode binary numbers. Look into signed number representations. For 9 bits, the ranges and the amount of numbers that can be represented will differ depending on the system used.

How Does Modulus Divison Work

I don't really understand how modulus division works.
I was calculating 27 % 16 and wound up with 11 and I don't understand why.
I can't seem to find an explanation in layman's terms online.
Can someone elaborate on a very high level as to what's going on here?
Most explanations miss one important step, let's fill the gap using another example.
Given the following:
Dividend: 16
Divisor: 6
The modulus function looks like this:
16 % 6 = 4
Let's determine why this is.
First, perform integer division, which is similar to normal division, except any fractional number (a.k.a. remainder) is discarded:
16 / 6 = 2
Then, multiply the result of the above division (2) with our divisor (6):
2 * 6 = 12
Finally, subtract the result of the above multiplication (12) from our dividend (16):
16 - 12 = 4
The result of this subtraction, 4, the remainder, is the same result of our modulus above!
The result of a modulo division is the remainder of an integer division of the given numbers.
That means:
27 / 16 = 1, remainder 11
=> 27 mod 16 = 11
Other examples:
30 / 3 = 10, remainder 0
=> 30 mod 3 = 0
35 / 3 = 11, remainder 2
=> 35 mod 3 = 2
The simple formula for calculating modulus is :-
[Dividend-{(Dividend/Divisor)*Divisor}]
So, 27 % 16 :-
27- {(27/16)*16}
27-{1*16}
Answer= 11
Note:
All calculations are with integers. In case of a decimal quotient, the part after the decimal is to be ignored/truncated.
eg: 27/16= 1.6875 is to be taken as just 1 in the above mentioned formula. 0.6875 is ignored.
Compilers of computer languages treat an integer with decimal part the same way (by truncating after the decimal) as well
Maybe the example with an clock could help you understand the modulo.
A familiar use of modular arithmetic is its use in the 12-hour clock, in which the day is divided into two 12 hour periods.
Lets say we have currently this time: 15:00
But you could also say it is 3 pm
This is exactly what modulo does:
15 / 12 = 1, remainder 3
You find this example better explained on wikipedia: Wikipedia Modulo Article
The modulus operator takes a division statement and returns whatever is left over from that calculation, the "remaining" data, so to speak, such as 13 / 5 = 2. Which means, there is 3 left over, or remaining from that calculation. Why? because 2 * 5 = 10. Thus, 13 - 10 = 3.
The modulus operator does all that calculation for you, 13 % 5 = 3.
modulus division is simply this : divide two numbers and return the remainder only
27 / 16 = 1 with 11 left over, therefore 27 % 16 = 11
ditto 43 / 16 = 2 with 11 left over so 43 % 16 = 11 too
Very simple: a % b is defined as the remainder of the division of a by b.
See the wikipedia article for more examples.
I would like to add one more thing:
it's easy to calculate modulo when dividend is greater/larger than divisor
dividend = 5
divisor = 3
5 % 3 = 2
3)5(1
3
-----
2
but what if divisor is smaller than dividend
dividend = 3
divisor = 5
3 % 5 = 3 ?? how
This is because, since 5 cannot divide 3 directly, modulo will be what dividend is
I hope these simple steps will help:
20 % 3 = 2
20 / 3 = 6; do not include the .6667 – just ignore it
3 * 6 = 18
20 - 18 = 2, which is the remainder of the modulo
Easier when your number after the decimal (0.xxx) is short. Then all you need to do is multiply that number with the number after the division.
Ex: 32 % 12 = 8
You do 32/12=2.666666667
Then you throw the 2 away, and focus on the 0.666666667
0.666666667*12=8 <-- That's your answer.
(again, only easy when the number after the decimal is short)
27 % 16 = 11
You can interpret it this way:
16 goes 1 time into 27 before passing it.
16 * 2 = 32.
So you could say that 16 goes one time in 27 with a remainder of 11.
In fact,
16 + 11 = 27
An other exemple:
20 % 3 = 2
Well 3 goes 6 times into 20 before passing it.
3 * 6 = 18
To add-up to 20 we need 2 so the remainder of the modulus expression is 2.
The only important thing to understand is that modulus (denoted here by % like in C) is defined through the Euclidean division.
For any two (d, q) integers the following is always true:
d = ( d / q ) * q + ( d % q )
As you can see the value of d%q depends on the value of d/q. Generally for positive integers d/q is truncated toward zero, for instance 5/2 gives 2, hence:
5 = (5/2)*2 + (5%2) => 5 = 2*2 + (5%2) => 5%2 = 1
However for negative integers the situation is less clear and depends on the language and/or the standard. For instance -5/2 can return -2 (truncated toward zero as before) but can also returns -3 (with another language).
In the first case:
-5 = (-5/2)*2 + (-5%2) => -5 = -2*2 + (-5%2) => -5%2 = -1
but in the second one:
-5 = (-5/2)*2 + (-5%2) => -5 = -3*2 + (-5%2) => -5%2 = +1
As said before, just remember the invariant, which is the Euclidean division.
Further details:
What is the behavior of integer division?
Division and Modulus for Computer Scientists
Modulus division gives you the remainder of a division, rather than the quotient.
It's simple, Modulus operator(%) returns remainder after integer division. Let's take the example of your question. How 27 % 16 = 11? When you simply divide 27 by 16 i.e (27/16) then you get remainder as 11, and that is why your answer is 11.
Lets say you have 17 mod 6.
what total of 6 will get you the closest to 17, it will be 12 because if you go over 12 you will have 18 which is more that the question of 17 mod 6. You will then take 12 and minus from 17 which will give you your answer, in this case 5.
17 mod 6=5
Modulus division is pretty simple. It uses the remainder instead of the quotient.
1.0833... <-- Quotient
__
12|13
12
1 <-- Remainder
1.00 <-- Remainder can be used to find decimal values
.96
.040
.036
.0040 <-- remainder of 4 starts repeating here, so the quotient is 1.083333...
13/12 = 1R1, ergo 13%12 = 1.
It helps to think of modulus as a "cycle".
In other words, for the expression n % 12, the result will always be < 12.
That means the sequence for the set 0..100 for n % 12 is:
{0,1,2,3,4,5,6,7,8,9,10,11,0,1,2,3,4,5,6,7,8,9,10,11,0,[...],4}
In that light, the modulus, as well as its uses, becomes much clearer.
Write out a table starting with 0.
{0,1,2,3,4}
Continue the table in rows.
{0,1,2,3,4}
{5,6,7,8,9}
{10,11,12,13,14}
Everything in column one is a multiple of 5. Everything in column 2 is a
multiple of 5 with 1 as a remainder. Now the abstract part: You can write
that (1) as 1/5 or as a decimal expansion. The modulus operator returns only
the column, or in another way of thinking, it returns the remainder on long
division. You are dealing in modulo(5). Different modulus, different table.
Think of a Hash Table.
When we divide two integers we will have an equation that looks like the following:
A/B​​ =Q remainder R
A is the dividend; B is the divisor; Q is the quotient and R is the remainder
Sometimes, we are only interested in what the remainder is when we divide A by B.
For these cases there is an operator called the modulo operator (abbreviated as mod).
Examples
16/5= 3 Remainder 1 i.e 16 Mod 5 is 1.
0/5= 0 Remainder 0 i.e 0 Mod 5 is 0.
-14/5= 3 Remainder 1 i.e. -14 Mod 5 is 1.
See Khan Academy Article for more information.
In Computer science, Hash table uses Mod operator to store the element where A will be the values after hashing, B will be the table size and R is the number of slots or key where element is inserted.
See How does a hash table works for more information
This was the best approach for me for understanding modulus operator. I will just explain to you through examples.
16 % 3
When you division these two number, remainder is the result. This is the way how i do it.
16 % 3 = 3 + 3 = 6; 6 + 3 = 9; 9 + 3 = 12; 12 + 3 = 15
So what is left to 16 is 1
16 % 3 = 1
Here is one more example: 16 % 7 = 7 + 7 = 14 what is left to 16? Is 2 16 % 7 = 2
One more: 24 % 6 = 6 + 6 = 12; 12 + 6 = 18; 18 + 6 = 24. So remainder is zero, 24 % 6 = 0