I am currently trying to make use functions to create:
0 V12 V13 V14
V21 0 V23 V24
V31 V32 0 V34
V41 V42 V43 0
A way that I found to do this was to use theses equations:
(2*V1 - 1)*(2*V2-1) = for spot V(1,2) in the Matrix
(2*V1 - 1)*(2*V3-1) = for spot V(1,3) in the Matrix
etc
Thus far I have:
let singleState state =
if state = 0.0 then 0.0
else
((2.0 *. state) -. 1.0);;
let rec matrixState v =
match v with
| [] -> []
| hd :: [] -> v
| hd :: (nx :: _ as tl) ->
singleState hd *. singleState nx :: matrixState tl;;
My results come out to be:
float list = [-3.; -3.; -3.; -1.]
When they should be a list of lists that look as follows:
0 -1 1 -1
-1 0 -1 1
1 -1 0 -1
-1 1 -1 0
So instead of it making list of lists it is making just one list. I also have trouble figuring out how to make the diagonals 0.
The signatures should look like:
val singleState : float list -> float list list = <fun>
val matrixState : float list list -> float list list = <fun>
and I am getting
val singleState : float -> float = <fun>
val matrixState : float list -> float list = <fun>
Any ideas?
With some fixing up, your function would make one row of the result. Then you could call it once for each row you need. A good way to do the repeated calling might be with List.map.
Assuming this is mostly a learning exercise, it might be good to first make a matrix like this:
V11 V12 V13 V14
V21 V22 V23 V24
V31 V32 V33 V34
V41 V42 V43 V44
I think this will be a lot easier to calculate.
Then you can replace the diagonal with zeroes. Here's some code that would replace the diagonal:
let replnth r n l =
List.mapi (fun i x -> if i = n then r else x) l
let zerorow row (n, res) =
(n - 1, replnth 0.0 n row :: res)
let zerodiag m =
let (_, res) = List.fold_right zerorow m (List.length m - 1, []) in
res
I would prefer to go with an array for your work.
A nice function to use is then Array.init, it works like so,
# Array.init 5 (fun x -> x);;
- : int array = [|0; 1; 2; 3; 4|]
We note that 5 play the role of the size of our Array.
But as you want a matrix we need to build an Array of Array which is achieve with two call of Array.init, the last one nested into the first one,
# Array.init 3 (fun row -> Array.init 3 (fun col -> row+col));;
- : int array array = [|[|0; 1; 2|]; [|1; 2; 3|]; [|2; 3; 4|]|]
Note, I've called my variable row and col to denote the fact that they correspond to the row index and column index of our matrix.
Last, as your formula use a vector of reference V holding value [|V1;V2;V3;V4|], we need to create one and incorporate call to it into our matrix builder, (The value hold on the cell n of an array tab is accessed like so tab.(n-1))
Which finally lead us to the working example,
let vect = [|1;2;3;4|]
let built_matrix =
Array.init 4 (fun row ->
Array.init 4 (fun col ->
if col=row then 0
else vect.(row)+vect.(col)))
Of course you'll have to adapt it to your convenience in order to match this piece of code according to your requirement.
A side note about syntax,
Repeating Array each time can be avoid using some nice feature of OCaml.
We can locally open a module like so,
let built_matrix =
let open Array in
init 4 (fun row ->
init 4 (fun col ->
if col=row then 0
else vect.(row)+vect.(col)))
Even shorter, let open Array in ... can be write as Array.(...), Below a chunk of code interpreted under the excellent utop to illustrate it (and I going to profit of this opportunity to incorporate a conversion of our matrix to a list of list.)
utop #
Array.(
to_list
## map to_list
## init 4 (fun r ->
init 4 (fun c ->
if r = c then 0
else vect.(r)+ vect.(c))))
;;
- : int list list = [[0; 3; 4; 5]; [3; 0; 5; 6]; [4; 5; 0; 7]; [5; 6; 7; 0]]
I hope it helps
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
The challenge
The shortest code by character count to solve the input lights out board.
The lights out board is a 2d square grid of varying size composed of two characters - . for a light that is off and * for a light that is on.
To solve the board, all "lights" have to be turned off. Toggling a light (i.e. turning off when it is on, turning on when it is off) is made 5 lights at a time - the light selected and the lights surround it in a + (plus) shape.
"Selecting" the middle light will solve the board:
.*.
***
.*.
Since Lights Out! solution order does not matter, the output will be a new board with markings on what bulbs to select. The above board's solution is
...
.X.
...
Turning off a light in a corner where there are no side bulbs to turn off will not overflow:
...
..*
.**
Selecting the lower-right bulb will only turn off 3 bulbs in this case.
Test cases
Input:
**.**
*.*.*
.***.
*.*.*
**.**
Output:
X...X
.....
..X..
.....
X...X
Input:
.*.*.
**.**
.*.*.
*.*.*
*.*.*
Output:
.....
.X.X.
.....
.....
X.X.X
Input:
*...*
**.**
..*..
*.*..
*.**.
Output:
X.X.X
..X..
.....
.....
X.X..
Code count includes input/output (i.e full program).
Perl, 172 characters
Perl, 333 251 203 197 190 172 characters. In this version, we randomly push buttons until all of the lights are out.
map{$N++;$E+=/\*/*1<<$t++for/./g}<>;
$C^=$b=1<<($%=rand$t),
$E^=$b|$b>>$N|($%<$t-$N)*$b<<$N|($%%$N&&$b/2)|(++$%%$N&&$b*2)while$E;
die map{('.',X)[1&$C>>$_-1],$_%$N?"":$/}1..$t
Haskell, 263 characters (277 and 285 before edit) (according to wc)
import List
o x=zipWith4(\a b c i->foldr1(/=)[a,b,c,i])x(f:x)$tail x++[f]
f=0>0
d t=mapM(\_->[f,1>0])t>>=c t
c(l:m:n)x=map(x:)$c(zipWith(/=)m x:n)$o x l
c[k]x=[a|a<-[[x]],not$or$o x k]
main=interact$unlines.u((['.','X']!!).fromEnum).head.d.u(<'.').lines
u=map.map
This includes IO code : you can simply compile it and it works.
This method use the fact that once the first line of the solution is determined, it is easy to determine what the other lines should look like. So we try every solution for the first line, and verify that the all lights are off on the last line, and this algorithm is O(n²*2^n)
Edit : here is an un-shrunk version :
import Data.List
-- xor on a list. /= works like binary xor, so we just need a fold
xor = foldr (/=) False
-- what will be changed on a line when we push the buttons :
changeLine orig chg = zipWith4 (\a b c d -> xor [a,b,c,d]) chg (False:chg) (tail chg ++ [False]) orig
-- change a line according to the buttons pushed one line higher :
changeLine2 orig chg = zipWith (/=) orig chg
-- compute a solution given a first line.
-- if no solution is given, return []
solution (l1:l2:ls) chg = map (chg:) $ solution (changeLine2 l2 chg:ls) (changeLine l1 chg)
solution [l] chg = if or (changeLine l chg) then [] else [[chg]]
firstLines n = mapM (const [False,True]) [1..n]
-- original uses something equivalent to "firstLines (length gris)", which only
-- works on square grids.
solutions grid = firstLines (length $ head grid) >>= solution grid
main = interact $ unlines . disp . head . solutions . parse . lines
where parse = map (map (\c ->
case c of
'.' -> False
'*' -> True))
disp = map (map (\b -> if b then 'X' else '.'))
Ruby, 225 221
b=$<.read.split
d=b.size
n=b.join.tr'.*','01'
f=2**d**2
h=0
d.times{h=h<<d|2**d-1&~1}
f.times{|a|e=(n.to_i(2)^a^a<<d^a>>d^(a&h)>>1^a<<1&h)&f-1
e==0&&(i=("%0*b"%[d*d,a]).tr('01','.X')
d.times{puts i[0,d]
i=i[d..-1]}
exit)}
F#, 672 646 643 634 629 628 chars (incl newlines)
EDIT: priceless: this post triggered Stackoverflow's human verification system. I bet it's because of the code.
EDIT2: more filthy tricks knocked off 36 chars. Reversing an if in the second line shaved off 5 more.
Writing this code made my eyes bleed and my brain melt.
The good: it's short(ish).
The bad: it'll crash on any input square larger than 4x4 (it's an O(be stupid and try everything) algorithm, O(n*2^(n^2)) to be more precise). Much of the ugliness comes from padding the input square with zeroes on all sides to avoid edge and corner cases.
The ugly: just look at it. It's code only a parent could love. Liberal uses of >>> and <<< made F# look like brainfuck.
The program accepts rows of input until you enter a blank line.
This code doesn't work in F# interactive. It has to be compiled inside a project.
open System
let rec i()=[let l=Console.ReadLine()in if l<>""then yield!l::i()]
let a=i()
let m=a.[0].Length
let M=m+2
let q=Seq.sum[for k in 1..m->(1L<<<m)-1L<<<k*M+1]
let B=Seq.sum(Seq.mapi(fun i s->Convert.ToInt64(String.collect(function|'.'->"0"|_->"1")s,2)<<<M*i+M+1)a)
let rec f B x=function 0L->B&&&q|n->f(if n%2L=1L then B^^^(x*7L/2L+(x<<<M)+(x>>>M))else B)(x*2L)(n/2L)
let z=fst<|Seq.find(snd>>(=)0L)[for k in 0L..1L<<<m*m->let n=Seq.sum[for j in 0..m->k+1L&&&(((1L<<<m)-1L)<<<j*m)<<<M+1+2*j]in n,f B 1L n]
for i=0 to m-1 do
for j=0 to m-1 do printf"%s"(if z&&&(1L<<<m-j+M*i+M)=0L then "." else "X")
printfn""
F#, 23 lines
Uses brute force and a liberal amount of bitmasking to find a solution:
open System.Collections
let solve(r:string) =
let s = r.Replace("\n", "")
let size = s.Length|>float|>sqrt|>int
let buttons =
[| for i in 0 .. (size*size)-1 do
let x = new BitArray(size*size)
{ 0 .. (size*size)-1 } |> Seq.iter (fun j ->
let toXY n = n / size, n % size
let (ir, ic), (jr, jc) = toXY i, toXY j
x.[j] <- ir=jr&&abs(ic-jc)<2||ic=jc&&abs(ir-jr)<2)
yield x |]
let testPerm permutation =
let b = new BitArray(s.Length)
s |> Seq.iteri (fun i x -> if x = '*' then b.[i] <- true)
permutation |> Seq.iteri (fun i x -> if x = '1' then b.Xor(buttons.[i]);() )
b |> Seq.cast |> Seq.forall (fun x -> not x)
{for a in 0 .. (1 <<< (size * size)) - 1 -> System.Convert.ToString(a, 2).PadLeft(size * size, '0') }
|> Seq.pick (fun p -> if testPerm p then Some p else None)
|> Seq.iteri (fun i s -> printf "%s%s" (if s = '1' then "X" else ".") (if (i + 1) % size = 0 then "\n" else "") )
Usage:
> solve ".*.
***
.*.";;
...
.X.
...
val it : unit = ()
> solve "**.**
*.*.*
.***.
*.*.*
**.**";;
..X..
X.X.X
..X..
X.X.X
..X..
val it : unit = ()
> solve "*...*
**.**
..*..
*.*..
*.**.";;
.....
X...X
.....
X.X.X
....X
C89, 436 characters
Original source (75 lines, 1074 characters):
#include <stdio.h>
#include <string.h>
int board[9][9];
int zeroes[9];
char presses[99];
int size;
int i;
#define TOGGLE { \
board[i][j] ^= 4; \
if(i > 0) \
board[i-1][j] ^= 4; \
if(j > 0) \
board[i][j-1] ^= 4; \
board[i+1][j] ^= 4; \
board[i][j+1] ^= 4; \
presses[i*size + i + j] ^= 118; /* '.' xor 'X' */ \
}
void search(int j)
{
int i = 0;
if(j == size)
{
for(i = 1; i < size; i++)
{
for(j = 0; j < size; j++)
{
if(board[i-1][j])
TOGGLE
}
}
if(memcmp(board[size - 1], zeroes, size * sizeof(int)) == 0)
puts(presses);
for(i = 1; i < size; i++)
{
for(j = 0; j < size; j++)
{
if(presses[i*size + i + j] & 16)
TOGGLE
}
}
}
else
{
search(j+1);
TOGGLE
search(j+1);
TOGGLE
}
}
int main(int c, char **v)
{
while((c = getchar()) != EOF)
{
if(c == '\n')
{
size++;
i = 0;
}
else
board[size][i++] = ~c & 4; // '.' ==> 0, '*' ==> 4
}
memset(presses, '.', 99);
for(c = 1; c <= size; c++)
presses[c * size + c - 1] = '\n';
presses[size * size + size] = '\0';
search(0);
}
Compressed source, with line breaks added for your sanity:
#define T{b[i][j]^=4;if(i)b[i-1][j]^=4;if(j)b[i][j-1]^=4;b[i+1][j]^=4;b[i][j+1]^=4;p[i*s+i+j]^=118;}
b[9][9],z[9],s,i;char p[99];
S(j){int i=0;if(j-s){S(j+1);T S(j+1);T}else{
for(i=1;i<s;i++)for(j=0;j<s;j++)if(b[i-1][j])T
if(!memcmp(b[s-1],z,s*4))puts(p);
for(i=1;i<s;i++)for(j=0;j<s;j++)if(p[i*s+i+j]&16)T}}
main(c){while((c=getchar())+1)if(c-10)b[s][i++]=~c&4;else s++,i=0;
memset(p,46,99);for(c=1;c<=s;c++)p[c*s+c-1]=10;p[s*s+s]=0;S(0);}
Note that this solution assumes 4-byte integers; if integers are not 4 bytes on your system, replace the 4 in the call to memcmp with your integer size. The maximum sized grid this supports is 8x8 (not 9x9, since the bit flipping ignores two of the edge cases); to support up to 98x98, add another 9 to the array sizes in the declarations of b, z and p and the call to memset.
Also note that this finds and prints ALL solutions, not just the first solution. Runtime is O(2^N * N^2), where N is the size of the grid. The input format must be perfectly valid, as no error checking is performed -- it must consist of only ., *, and '\n', and it must have exactly N lines (i.e. the last character must be a '\n').
Ruby:
class Array
def solve
carry
(0...(2**w)).each {|i|
flip i
return self if solved?
flip i
}
end
def flip(i)
(0...w).each {|n|
press n, 0 if i & (1 << n) != 0
}
carry
end
def solved?
(0...h).each {|y|
(0...w).each {|x|
return false if self[y][x]
}
}
true
end
def carry
(0...h-1).each {|y|
(0...w).each {|x|
press x, y+1 if self[y][x]
}
}
end
def h() size end
def w() self[0].size end
def press x, y
#presses = (0...h).map { [false] * w } if #presses == nil
#presses[y][x] = !#presses[y][x]
inv x, y
if y>0 then inv x, y-1 end
if y<h-1 then inv x, y+1 end
if x>0 then inv x-1, y end
if x<w-1 then inv x+1, y end
end
def inv x, y
self[y][x] = !self[y][x]
end
def presses
(0...h).each {|y|
puts (0...w).map {|x|
if #presses[y][x] then 'X' else '.' end
}.inject {|a,b| a+b}
}
end
end
STDIN.read.split(/\n/).map{|x|x.split(//).map {|v|v == '*'}}.solve.presses
Lua, 499 characters
Fast, uses Strategy to find a quicker solution.
m={46,[42]=88,[46]=1,[88]=42}o={88,[42]=46,[46]=42,[88]=1}z={1,[42]=1}r=io.read
l=r()s=#l q={l:byte(1,s)}
for i=2,s do q[#q+1]=10 l=r()for j=1,#l do q[#q+1]=l:byte(j)end end
function t(p,v)q[p]=v[q[p]]or q[p]end
function u(p)t(p,m)t(p-1,o)t(p+1,o)t(p-s-1,o)t(p+s+1,o)end
while 1 do e=1 for i=1,(s+1)*s do
if i>(s+1)*(s-1)then if z[q[i]]then e=_ end
elseif z[q[i]]then u(i+s+1)end end
if e then break end
for i=1,s do if 42==q[i]or 46==q[i]then u(i)break end u(i)end end
print(string.char(unpack(q)))
Example input:
.....
.....
.....
.....
*...*
Example output:
XX...
..X..
X.XX.
X.X.X
...XX
Some of these have multiple answers. This seems to work but it's not exactly fast.
Groovy: 790 chracters
bd = System.in.readLines().collect{it.collect { it=='*'}}
sl = bd.collect{it.collect{false}}
println "\n\n\n"
solve(bd, sl, 0, 0, 0)
def solve(board, solution, int i, int j, prefix) {
/* println " ".multiply(prefix) + "$i $j"*/
if(done(board)) {
println sl.collect{it.collect{it?'X':'.'}.join("")}.join("\n")
return
}
if(j>=board[i].size) {
j=0; i++
}
if(i==board.size) {
return
}
solve(board, solution, i, j+1, prefix+1)
flip(solution, i, j)
flip(board, i, j)
flip(board, i+1, j)
flip(board, i-1, j)
flip(board, i, j+1)
flip(board, i, j-1)
solve(board, solution, i, j+1, prefix+1)
}
def flip(board, i, j) {
if(i>=0 && i<board.size && j>=0 && j<board[i].size)
board[i][j] = !board[i][j]
}
def done(board) {
return board.every { it.every{!it} }
}
For Haskell, here's a 406 376 342 character solution, though I'm sure there's a way to shrink this. Call the s function for the first solution found:
s b=head$t(b,[])
l=length
t(b,m)=if l u>0 then map snd u else concat$map t c where{i=[0..l b-1];c=[(a b p,m++[p])|p<-[(x,y)|x<-i,y<-i]];u=filter((all(==False)).fst)c}
a b(x,y)=foldl o b[(x,y),(x-1,y),(x+1,y),(x,y-1),(x,y+1)]
o b(x,y)=if x<0||y<0||x>=r||y>=r then b else take i b++[not(b!!i)]++drop(i+1)b where{r=floor$sqrt$fromIntegral$l b;i=y*r+x}
In its more-readable, typed form:
solution :: [Bool] -> [(Int,Int)]
solution board = head $ solutions (board, [])
solutions :: ([Bool],[(Int,Int)]) -> [[(Int,Int)]]
solutions (board,moves) =
if length solutions' > 0
then map snd solutions'
else concat $ map solutions candidates
where
boardIndices = [0..length board - 1]
candidates = [
(applyMove board pair, moves ++ [pair])
| pair <- [(x,y) | x <- boardIndices, y <- boardIndices]]
solutions' = filter ((all (==False)) . fst) candidates
applyMove :: [Bool] -> (Int,Int) -> [Bool]
applyMove board (x,y) =
foldl toggle board [(x,y), (x-1,y), (x+1,y), (x,y-1), (x,y+1)]
toggle :: [Bool] -> (Int,Int) -> [Bool]
toggle board (x,y) =
if x < 0 || y < 0 || x >= boardSize || y >= boardSize then board
else
take index board ++ [ not (board !! index) ]
++ drop (index + 1) board
where
boardSize = floor $ sqrt $ fromIntegral $ length board
index = y * boardSize + x
Note that this is a horrible breadth-first, brute-force algorithm.
F#, 365 370, 374, 444 including all whitespace
open System
let s(r:string)=
let d=r.IndexOf"\n"
let e,m,p=d+1,r.ToCharArray(),Random()
let o b k=m.[k]<-char(b^^^int m.[k])
while String(m).IndexOfAny([|'*';'\\'|])>=0 do
let x,y=p.Next d,p.Next d
o 118(x+y*e)
for i in x-1..x+1 do for n in y-1..y+1 do if i>=0&&i<d&&n>=0&&n<d then o 4(i+n*e)
printf"%s"(String m)
Here's the original readable version before the xor optimization. 1108
open System
let solve (input : string) =
let height = input.IndexOf("\n")
let width = height + 1
let board = input.ToCharArray()
let rnd = Random()
let mark = function
| '*' -> 'O'
| '.' -> 'X'
| 'O' -> '*'
| _ -> '.'
let flip x y =
let flip = function
| '*' -> '.'
| '.' -> '*'
| 'X' -> 'O'
| _ -> 'X'
if x >= 0 && x < height && y >= 0 && y < height then
board.[x + y * width] <- flip board.[x + y * width]
let solved() =
String(board).IndexOfAny([|'*';'O'|]) < 0
while not (solved()) do
let x = rnd.Next(height) // ignore newline
let y = rnd.Next(height)
board.[x + y * width] <- mark board.[x + y * width]
for i in -1..1 do
for n in -1..1 do
flip (x + i) (y + n)
printf "%s" (String(board))
Python — 982
Count is 982 not counting tabs and newlines. This includes necessary spaces. Started learning python this week, so I had some fun :). Pretty straight forward, nothing fancy here, besides the crappy var names to make it shorter.
import re
def m():
s=''
while 1:
y=raw_input()
if y=='':break
s=s+y+'\n'
t=a(s)
t.s()
t.p()
class a:
def __init__(x,y):
x.t=len(y);
r=re.compile('(.*)\n')
x.z=r.findall(y)
x.w=len(x.z[0])
x.v=len(x.z)
def s(x):
n=0
for i in range(0,x.t):
if(x.x(i,0)):
break
def x(x,d,c):
b=x.z[:]
for i in range(1,x.v+1):
for j in range(1,x.w+1):
if x.c():
break;
x.z=b[:]
x.u(i,j)
if d!=c:
x.x(d,c+1)
if x.c():
break;
if x.c():
return 1
x.z=b[:]
return 0;
def y(x,r,c):
e=x.z[r-1][c-1]
if e=='*':
return '.'
elif e=='x':
return 'X'
elif e=='X':
return 'x'
else:
return '*'
def j(x,r,c):
v=x.y(r+1,c)
x.r(r+1,c,v)
def k(x,r,c):
v=x.y(r-1,c)
x.r(r-1,c,v)
def h(x,r,c):
v=x.y(r,c-1)
x.r(r,c-1,v)
def l(x,r,c):
v=x.y(r,c+1)
x.r(r,c+1,v)
def u(x,r,c):
e=x.z[r-1][c-1]
if e=='*' or e=='x':
v='X'
else:
v='x'
x.r(r,c,v)
if r!=1:
x.k(r,c)
if r!=x.v:
x.j(r,c)
if c!=1:
x.h(r,c)
if c!=x.w:
x.l(r,c)
def r(x,r,c,l):
m=x.z[r-1]
m=m[:c-1]+l+m[c:]
x.z[r-1]=m
def c(x):
for i in x.z:
for j in i:
if j=='*' or j=='x':
return 0
return 1
def p(x):
for i in x.z:
print i
print '\n'
if __name__=='__main__':
m()
Usage:
*...*
**.**
..*..
*.*..
*.**.
X.X.X
..X..
.....
.....
X.X..