Solidity Smart Contracts redundant inheritance - ethereum

I'm reviewing OpenZeppelin's smart contracts and in many cases I find that there tends to be a redundant or duplicate inheritance.
contract ERC20 is IERC20, IERC20Metadata {}
interface IERC20 {}
interface IERC20Metadata is IERC20 {}
In this example, ERC20 implements IERC20Metadata which already implements IERC20. Nonetheless, the contract implements both of them. I tried removing the redundant interfaces and it works just fine. Is there a reason for this? Is it for clarity or legibility purposes only?

The author of this code states in a comment:
It's technically not necessary, but it's good to be explicit.

Related

When it comes to Upgradeable contracts, does Openzeppelin Initializable and Hardhat upgrades do the same thing?

Openzeppelin Initializable suggests using initialize (initializer) method. Hardhat upgrades suggest to use a initialize method (even the name can be anything) and do that invocation during deployment/upgrade time. Does it mean these two means the same thing and achieve the upgradeable contract pattern in two ways? Can we use both of these together?
Came across this doubt when I was referring both of the patterns when I wanted to implement Upgradeable in my project.

Can you violate the Interface Segregation Principle without violating the Liskov substitution principle?

When reading about ISP, I keep running into examples where a class implementing an interface has a method that throws some type of not-implemented exception. Isn't this also a violation of LSP?
However, if ISP always comes down to cases where you have unsupported methods then you're always violating LSP at the same time making ISP redundant.
I'm guessing I'm missing something, so can someone provide a clear example where you're violating ISP and not violating LSP?
I'm guessing the answer might be related to the exact meaning of "no client should depend on methods it doesn't use". What is meant by client here? Is it a class that implements the interface or a class that has access to an object implementing that interface and may make calls on it?

(ethereum/solidity/truffle) calling smart contract method from test/client question

I am taking a udemy course and I encounter a code like this
https://github.com/acloudfan/Blockchain-Course-Basic-Solidity/blob/93ca256bcf8c436c144425291257dcff5c3b269f/test/constants_payable.js#L45
I am confuse why the call to a method is called directly instead of using .call or something, wherein if I do google, the way to call a method of a contract is either using .call or .send but at this point the author just calls it directly, is this allowed, why?
here is the contract code
https://github.com/acloudfan/Blockchain-Course-Basic-Solidity/blob/master/contracts/ConstantsPayable.sol
More or less, what is the context of calling smart contract method from a truffle test here? is it like the real environment where it waits for the transaction to be mined before returning or do tests just directly calls it like an ordinary function?
I am posting it here since the author of the udemy course is non responsive and its almost a week and more than a dozen Q&A question are not answered, so the author probably is busy or forgets about the course already (as it is kinda old course but reviewed well).
Before Truffle returns the contract instance (line 41), it uses the ABI interface (provided by the Solidity compiler) to build a map of JS functions for interacting with the contract, including receiveEthers().
what is the context of calling smart contract method from a truffle test here
Even though Truffle JS tests can be connected to a public testnet or mainnet, it's usually used together with another Truffle tool - local EVM and blockchain emulator called Ganache (see the config file where the author defines connection to a local blockchain). By default, Ganache mines a block after each transaction so that you (as a developer or a tester) don't need to worry about mining and other processes in setting up the network, and the response from the local blockchain it returned almost instantly.
if I do google, the way to call a method of a contract is either using .call or .send
Answering only about Truffle. Other packages such as Web3js or Ethers.js might have slightly different rules. And there are .call() and .send() methods in Solidity (for interacting with other contracts or addresses), that also behave differently than explained here:
You can interact with a contract in two different ways:
transactions (can make state changes - change contract storage, emit events)
calls (only read the contract data - no state changes)
By default, if you don't specify whether you want to make a transaction or a call, Truffle makes a transaction. You can override this decision and make a call instead by using the .call() method.
The .send() method is only used for low-level built transactions. A common use case is sending ETH - you need to build the transaction data field, fill the (ETH) value, and call the .send() method (assuming you have configured Truffle to use your private key to sign the transaction).

What is the primary function of an Interface in Actionscript?

I know that packages are collection of Classes and Interfaces, designed to both organize and classify its contents.
I also know that Classes are the definition of Objects, and the instructions for both them, their attributes/variables, and their functions/methods.
However, I have yet to understand what an Interface is, or what it is really for...
I have read this definition on Adobe's website..:
interface
Usage
interface InterfaceName [extends InterfaceName ] {}
Defines an interface. Interfaces are data types that define a set of methods; the methods must be defined by any class that implements the interface.
An interface is similar to a class, with the following important differences:
• Interfaces contain only declarations of methods, not their implementation. That is, every class that implements an interface must provide an implementation for each method declared in the interface.
• Interface method definitions cannot have any attribute such as public or private, but implemented methods must be marked as public in the definition of the class that implements the interface.
• Multiple interfaces can be inherited by an interface by means of the extends statement, or by a class through the implements statement.
Unlike ActionScript 2.0, ActionScript 3.0 allows the use of getter and setter methods in interface definitions.
...However, this is too vague to be helpful to me.
Does anyone know the purpose and proper implementation and/or design of an Interface in ActionScript?
Interfaces basically let you announce "This class can do these things."
As a real world example, you might want to make a tutorial for a game which highlights each of the different controls on screen one by one. Each control might flash or bounce to highlight itself, so you can say they implement an "IHighlightable" interface, and let them take care of the rest:
public interface IHighlightable {
function highlight():void;
}
Then in your controls:
public class Control implements IHighlightable {
public function highlight():void {
// Bounce and flash!
}
}
This means you can do things like:
private function highlightControl(tutorialItem:IHighlightable):void {
tutorialItem.highlight();
}
Importantly, you can have a class implement multiple interfaces, which is useful when classes share abilities, but it doesn't make sense to have them all extend a common base class.
Interfaces are a contract. It is compile time mechanism to force your to implement methods. In large OOP code bases, it is the best practice to have other classes depend on interfaces rather than other classes, so you can swap the implementation without changing the code that consumes the interface (this advantage is discutable in practice, since very often the interface will change too).
I believe interfaces are borrowed from Java which introduced them to achieve polymorphism (ClassA can be of type IFoo and IBar at the same time) without inheriting from multiple abstract classes (you can only extend one class, but you can implement any number of interfaces).
Although I'm technically wrong, I consider interfaces to be similar to C++ abstract classes.
Wikipedia article on Abstract Types
Oracle Java documentation on Abstracts
MSDN article on C# Interfaces
Interfaces are meant to define properties and methods without actually implementing them. Also, they cannot be instantiated
var test:FooInterface = new FooInterface() // would error

Why do most system architects insist on first programming to an interface?

Almost every Java book I read talks about using the interface as a way to share state and behaviour between objects that when first "constructed" did not seem to share a relationship.
However, whenever I see architects design an application, the first thing they do is start programming to an interface. How come? How do you know all the relationships between objects that will occur within that interface? If you already know those relationships, then why not just extend an abstract class?
Programming to an interface means respecting the "contract" created by using that interface. And so if your IPoweredByMotor interface has a start() method, future classes that implement the interface, be they MotorizedWheelChair, Automobile, or SmoothieMaker, in implementing the methods of that interface, add flexibility to your system, because one piece of code can start the motor of many different types of things, because all that one piece of code needs to know is that they respond to start(). It doesn't matter how they start, just that they must start.
Great question. I'll refer you to Josh Bloch in Effective Java, who writes (item 16) why to prefer the use of interfaces over abstract classes. By the way, if you haven't got this book, I highly recommend it! Here is a summary of what he says:
Existing classes can be easily retrofitted to implement a new interface. All you need to do is implement the interface and add the required methods. Existing classes cannot be retrofitted easily to extend a new abstract class.
Interfaces are ideal for defining mix-ins. A mix-in interface allows classes to declare additional, optional behavior (for example, Comparable). It allows the optional functionality to be mixed in with the primary functionality. Abstract classes cannot define mix-ins -- a class cannot extend more than one parent.
Interfaces allow for non-hierarchical frameworks. If you have a class that has the functionality of many interfaces, it can implement them all. Without interfaces, you would have to create a bloated class hierarchy with a class for every combination of attributes, resulting in combinatorial explosion.
Interfaces enable safe functionality enhancements. You can create wrapper classes using the Decorator pattern, a robust and flexible design. A wrapper class implements and contains the same interface, forwarding some functionality to existing methods, while adding specialized behavior to other methods. You can't do this with abstract methods - you must use inheritance instead, which is more fragile.
What about the advantage of abstract classes providing basic implementation? You can provide an abstract skeletal implementation class with each interface. This combines the virtues of both interfaces and abstract classes. Skeletal implementations provide implementation assistance without imposing the severe constraints that abstract classes force when they serve as type definitions. For example, the Collections Framework defines the type using interfaces, and provides a skeletal implementation for each one.
Programming to interfaces provides several benefits:
Required for GoF type patterns, such as the visitor pattern
Allows for alternate implementations. For example, multiple data access object implementations may exist for a single interface that abstracts the database engine in use (AccountDaoMySQL and AccountDaoOracle may both implement AccountDao)
A Class may implement multiple interfaces. Java does not allow multiple inheritance of concrete classes.
Abstracts implementation details. Interfaces may include only public API methods, hiding implementation details. Benefits include a cleanly documented public API and well documented contracts.
Used heavily by modern dependency injection frameworks, such as http://www.springframework.org/.
In Java, interfaces can be used to create dynamic proxies - http://java.sun.com/j2se/1.5.0/docs/api/java/lang/reflect/Proxy.html. This can be used very effectively with frameworks such as Spring to perform Aspect Oriented Programming. Aspects can add very useful functionality to Classes without directly adding java code to those classes. Examples of this functionality include logging, auditing, performance monitoring, transaction demarcation, etc. http://static.springframework.org/spring/docs/2.5.x/reference/aop.html.
Mock implementations, unit testing - When dependent classes are implementations of interfaces, mock classes can be written that also implement those interfaces. The mock classes can be used to facilitate unit testing.
I think one of the reasons abstract classes have largely been abandoned by developers might be a misunderstanding.
When the Gang of Four wrote:
Program to an interface not an implementation.
there was no such thing as a java or C# interface. They were talking about the object-oriented interface concept, that every class has. Erich Gamma mentions it in this interview.
I think following all the rules and principles mechanically without thinking leads to a difficult to read, navigate, understand and maintain code-base. Remember: The simplest thing that could possibly work.
How come?
Because that's what all the books say. Like the GoF patterns, many people see it as universally good and don't ever think about whether or not it is really the right design.
How do you know all the relationships between objects that will occur within that interface?
You don't, and that's a problem.
If
you already know those relationships,
then why not just extend an abstract
class?
Reasons to not extend an abstract class:
You have radically different implementations and making a decent base class is too hard.
You need to burn your one and only base class for something else.
If neither apply, go ahead and use an abstract class. It will save you a lot of time.
Questions you didn't ask:
What are the down-sides of using an interface?
You cannot change them. Unlike an abstract class, an interface is set in stone. Once you have one in use, extending it will break code, period.
Do I really need either?
Most of the time, no. Think really hard before you build any object hierarchy. A big problem in languages like Java is that it makes it way too easy to create massive, complicated object hierarchies.
Consider the classic example LameDuck inherits from Duck. Sounds easy, doesn't it?
Well, that is until you need to indicate that the duck has been injured and is now lame. Or indicate that the lame duck has been healed and can walk again. Java does not allow you to change an objects type, so using sub-types to indicate lameness doesn't actually work.
Programming to an interface means respecting the "contract" created by
using that interface
This is the single most misunderstood thing about interfaces.
There is no way to enforce any such contract with interfaces. Interfaces, by definition, cannot specify any behaviour at all. Classes are where behaviour happens.
This mistaken belief is so widespread as to be considered the conventional wisdom by many people. It is, however, wrong.
So this statement in the OP
Almost every Java book I read talks about using the interface as a way
to share state and behavior between objects
is just not possible. Interfaces have neither state nor behaviour. They can define properties, that implementing classes must provide, but that's as close as they can get. You cannot share behaviour using interfaces.
You can make an assumption that people will implement an interface to provide the sort of behaviour implied by the name of its methods, but that's not anything like the same thing. And it places no restrictions at all on when such methods are called (eg that Start should be called before Stop).
This statement
Required for GoF type patterns, such as the visitor pattern
is also incorrect. The GoF book uses exactly zero interfaces, as they were not a feature of the languages used at the time. None of the patterns require interfaces, although some can use them. IMO, the Observer pattern is one in which interfaces can play a more elegant role (although the pattern is normally implemented using events nowadays). In the Visitor pattern it is almost always the case that a base Visitor class implementing default behaviour for each type of visited node is required, IME.
Personally, I think the answer to the question is threefold:
Interfaces are seen by many as a silver bullet (these people usually labour under the "contract" misapprehension, or think that interfaces magically decouple their code)
Java people are very focussed on using frameworks, many of which (rightly) require classes to implement their interfaces
Interfaces were the best way to do some things before generics and annotations (attributes in C#) were introduced.
Interfaces are a very useful language feature, but are much abused. Symptoms include:
An interface is only implemented by one class
A class implements multiple interfaces. Often touted as an advantage of interfaces, usually it means that the class in question is violating the principle of separation of concerns.
There is an inheritance hierarchy of interfaces (often mirrored by a hierarchy of classes). This is the situation you're trying to avoid by using interfaces in the first place. Too much inheritance is a bad thing, both for classes and interfaces.
All these things are code smells, IMO.
It's one way to promote loose coupling.
With low coupling, a change in one module will not require a change in the implementation of another module.
A good use of this concept is Abstract Factory pattern. In the Wikipedia example, GUIFactory interface produces Button interface. The concrete factory may be WinFactory (producing WinButton), or OSXFactory (producing OSXButton). Imagine if you are writing a GUI application and you have to go look around all instances of OldButton class and changing them to WinButton. Then next year, you need to add OSXButton version.
In my opinion, you see this so often because it is a very good practice that is often applied in the wrong situations.
There are many advantages to interfaces relative to abstract classes:
You can switch implementations w/o re-building code that depends on the interface. This is useful for: proxy classes, dependency injection, AOP, etc.
You can separate the API from the implementation in your code. This can be nice because it makes it obvious when you're changing code that will affect other modules.
It allows developers writing code that is dependent on your code to easily mock your API for testing purposes.
You gain the most advantage from interfaces when dealing with modules of code. However, there is no easy rule to determine where module boundaries should be. So this best practice is easy to over-use, especially when first designing some software.
I would assume (with #eed3s9n) that it's to promote loose coupling. Also, without interfaces unit testing becomes much more difficult, as you can't mock up your objects.
Why extends is evil. This article is pretty much a direct answer to the question asked. I can think of almost no case where you would actually need an abstract class, and plenty of situations where it is a bad idea. This does not mean that implementations using abstract classes are bad, but you will have to take care so you do not make the interface contract dependent on artifacts of some specific implementation (case in point: the Stack class in Java).
One more thing: it is not necessary, or good practice, to have interfaces everywhere. Typically, you should identify when you need an interface and when you do not. In an ideal world, the second case should be implemented as a final class most of the time.
There are some excellent answers here, but if you're looking for a concrete reason, look no further than Unit Testing.
Consider that you want to test a method in the business logic that retrieves the current tax rate for the region where a transaction occurrs. To do this, the business logic class has to talk to the database via a Repository:
interface IRepository<T> { T Get(string key); }
class TaxRateRepository : IRepository<TaxRate> {
protected internal TaxRateRepository() {}
public TaxRate Get(string key) {
// retrieve an TaxRate (obj) from database
return obj; }
}
Throughout the code, use the type IRepository instead of TaxRateRepository.
The repository has a non-public constructor to encourage users (developers) to use the factory to instantiate the repository:
public static class RepositoryFactory {
public RepositoryFactory() {
TaxRateRepository = new TaxRateRepository(); }
public static IRepository TaxRateRepository { get; protected set; }
public static void SetTaxRateRepository(IRepository rep) {
TaxRateRepository = rep; }
}
The factory is the only place where the TaxRateRepository class is referenced directly.
So you need some supporting classes for this example:
class TaxRate {
public string Region { get; protected set; }
decimal Rate { get; protected set; }
}
static class Business {
static decimal GetRate(string region) {
var taxRate = RepositoryFactory.TaxRateRepository.Get(region);
return taxRate.Rate; }
}
And there is also another other implementation of IRepository - the mock up:
class MockTaxRateRepository : IRepository<TaxRate> {
public TaxRate ReturnValue { get; set; }
public bool GetWasCalled { get; protected set; }
public string KeyParamValue { get; protected set; }
public TaxRate Get(string key) {
GetWasCalled = true;
KeyParamValue = key;
return ReturnValue; }
}
Because the live code (Business Class) uses a Factory to get the Repository, in the unit test you plug in the MockRepository for the TaxRateRepository. Once the substitution is made, you can hard code the return value and make the database unneccessary.
class MyUnitTestFixture {
var rep = new MockTaxRateRepository();
[FixtureSetup]
void ConfigureFixture() {
RepositoryFactory.SetTaxRateRepository(rep); }
[Test]
void Test() {
var region = "NY.NY.Manhattan";
var rate = 8.5m;
rep.ReturnValue = new TaxRate { Rate = rate };
var r = Business.GetRate(region);
Assert.IsNotNull(r);
Assert.IsTrue(rep.GetWasCalled);
Assert.AreEqual(region, rep.KeyParamValue);
Assert.AreEqual(r.Rate, rate); }
}
Remember, you want to test the business logic method only, not the repository, database, connection string, etc... There are different tests for each of those. By doing it this way, you can completely isolate the code that you are testing.
A side benefit is that you can also run the unit test without a database connection, which makes it faster, more portable (think multi-developer team in remote locations).
Another side benefit is that you can use the Test-Driven Development (TDD) process for the implementation phase of development. I don't strictly use TDD but a mix of TDD and old-school coding.
In one sense, I think your question boils down to simply, "why use interfaces and not abstract classes?" Technically, you can achieve loose coupling with both -- the underlying implementation is still not exposed to the calling code, and you can use Abstract Factory pattern to return an underlying implementation (interface implementation vs. abstract class extension) to increase the flexibility of your design. In fact, you could argue that abstract classes give you slightly more, since they allow you to both require implementations to satisfy your code ("you MUST implement start()") and provide default implementations ("I have a standard paint() you can override if you want to") -- with interfaces, implementations must be provided, which over time can lead to brittle inheritance problems through interface changes.
Fundamentally, though, I use interfaces mainly due to Java's single inheritance restriction. If my implementation MUST inherit from an abstract class to be used by calling code, that means I lose the flexibility to inherit from something else even though that may make more sense (e.g. for code reuse or object hierarchy).
One reason is that interfaces allow for growth and extensibility. Say, for example, that you have a method that takes an object as a parameter,
public void drink(coffee someDrink)
{
}
Now let's say you want to use the exact same method, but pass a hotTea object. Well, you can't. You just hard-coded that above method to only use coffee objects. Maybe that's good, maybe that's bad. The downside of the above is that it strictly locks you in with one type of object when you'd like to pass all sorts of related objects.
By using an interface, say IHotDrink,
interface IHotDrink { }
and rewrting your above method to use the interface instead of the object,
public void drink(IHotDrink someDrink)
{
}
Now you can pass all objects that implement the IHotDrink interface. Sure, you can write the exact same method that does the exact same thing with a different object parameter, but why? You're suddenly maintaining bloated code.
Its all about designing before coding.
If you dont know all the relationships between two objects after you have specified the interface then you have done a poor job of defining the interface -- which is relatively easy to fix.
If you had dived straight into coding and realised half way through you are missing something its a lot harder to fix.
You could see this from a perl/python/ruby perspective :
when you pass an object as a parameter to a method you don't pass it's type , you just know that it must respond to some methods
I think considering java interfaces as an analogy to that would best explain this . You don't really pass a type , you just pass something that responds to a method ( a trait , if you will ).
I think the main reason to use interfaces in Java is the limitation to single inheritance. In many cases this lead to unnecessary complication and code duplication. Take a look at Traits in Scala: http://www.scala-lang.org/node/126 Traits are a special kind of abstract classes, but a class can extend many of them.