I am trying to extract only white text from the image using pixel manipulation but it does not work on some images.
It works on https://prnt.sc/24q29qu but not on https://prnt.sc/24pymne
Please see the code used and you may just paste the code in the console to see the output. Tested it on chrome browser. You may click on the output in the console to see the image output.
var imageSource = document.querySelector("body > div.image-constrain.js-image-wrap > div > div > img")
var width = 2*imageSource.width;
var height = 2*imageSource.height;
var img = new Image();
img.crossOrigin = 'anonymous';
img.src = imageSource.src;
var c = document.createElement("canvas")
c.width = width;
c.height = height;
var ctx = c.getContext("2d");
ctx.drawImage(img, 0, 0);
var imageData = ctx.getImageData(0, 0, width, height);
var data = imageData.data;
console.log(data);
// Replacing All the pixels except white
for (let i = 0; i < data.length; i += 4) {
if(data[i] != 255) {
data[i] = 0;
}
if(data[i+1] != 255) {
data[i+1] = 0;
}
if(data[i+2] != 255) {
data[i+2] = 0;
}
if(data[i+3] != 255) {
data[i+3] = 0;
}
}
console.log(imageData.data);
ctx.putImageData(imageData, 0, 0);
img.src = c.toDataURL();
pixelatedImage = c.toDataURL();
console.log(pixelatedImage);
Your code is not targeting white pixels, it is targeting each Red Green Blue and Alpha channels that are not 255 and set these channels to 0.
This means that if you have a red #FF0000 pixel, it will stay unchanged (Red is #FF (255) and thus won't be targeted, G & B are already 0, and Alpha is 255 too, so untargeted.
In your image, the Green channel of the green part is 255, so it's untargeted. However its Red channel is neither 0 nor 255, and you can see that the green color actually does change.
(async() => {
const resp = await fetch("https://i.ibb.co/ZKnmnT6/image.png");
if (!resp.ok) {
throw resp.status;
}
const blob = await resp.blob();
const image = await createImageBitmap(blob);
const canvas = document.createElement("canvas");
canvas.width = image.width;
canvas.height = image.height;
const ctx = canvas.getContext("2d");
ctx.drawImage(image, 0, 0);
document.body.append(canvas);
const [r,g,b,a] = ctx.getImageData(0, 0, 1, 1).data;
console.log({r,g,b,a});
})().catch(console.error);
To target white pixels, you need to check that the four RGBA channels are all 255, not one at a time.
(async() => {
const resp = await fetch("https://i.ibb.co/ZKnmnT6/image.png");
if (!resp.ok) {
throw resp.status;
}
const blob = await resp.blob();
const image = await createImageBitmap(blob);
const canvas = document.createElement("canvas");
canvas.width = image.width;
canvas.height = image.height;
const ctx = canvas.getContext("2d");
ctx.drawImage(image, 0, 0);
document.body.append(canvas);
const img = ctx.getImageData(0, 0, image.width, image.height);
const imgdata = img.data;
for (let i = 0; i<imgdata.length; i+=4) {
if (
imgdata[i ] !== 255 ||
imgdata[i+1] !== 255 ||
imgdata[i+2] !== 255 ||
imgdata[i+3] !== 255
) {
imgdata[i ] =
imgdata[i+1] =
imgdata[i+2] =
imgdata[i+3] = 0;
}
}
ctx.putImageData(img, 0, 0);
})().catch(console.error);
But you can do this in a more performant way by using an Uint32Array view over the ImageData's .data to treat each full pixel as a single entry, a white pixel would be 0xFFFFFFFF (beware though if you want to target an other color, the order is now 0xAAGGBBRR).
(async() => {
const resp = await fetch("https://i.ibb.co/ZKnmnT6/image.png");
if (!resp.ok) {
throw resp.status;
}
const blob = await resp.blob();
const image = await createImageBitmap(blob);
const canvas = document.createElement("canvas");
canvas.width = image.width;
canvas.height = image.height;
const ctx = canvas.getContext("2d");
ctx.drawImage(image, 0, 0);
document.body.append(canvas);
const img = ctx.getImageData(0, 0, image.width, image.height);
const imgdata = new Uint32Array(img.data.buffer);
for (let i = 0; i<imgdata.length; i++) {
if (imgdata[i] !== 0xFFFFFFFF) {
imgdata[i] = 0x00000000;
}
}
ctx.putImageData(img, 0, 0);
})().catch(console.error);
Related
My application stop working in Chrome 104, 105. Can anyone confirm this issue?
steps:
transparentDataArray: Uint8ClampedArray = new Uint8ClampedArray(w, h);
insert some values, leave 0,0,0,0 for transparent points
putImageData on context
drawImage over another context holding an image
=> expected (and working until 104) - replaces only non-transparent points
=> chrome 104 - replace transparent points with white color
const canvasMain = document.getElementById('main');
const contextMain = canvasMain.getContext('2d');
const canvas2 = document.createElement('canvas')
const context2 = canvas2.getContext('2d');
const drawData = () => {
console.log("draw data")
contextMain.putImageData(canvasDataInitial, 0, 0);
const dataArray = new Uint8ClampedArray(w * h * 4);
for (let i = 0; i < w * h; i = i + 4) {
dataArray[i] = 0;
dataArray[i + 1] = 150;
dataArray[i + 2] = 35;
dataArray[i + 3] = i > w * h / 3 ? 0 : 255;
}
canvas2.width = w;
canvas2.height = h;
context2.putImageData(new ImageData(dataArray, w, h), 0, 0);
contextMain.drawImage(canvas2, 0, 0);
}
let canvasDataInitial;
let w,h;
const image = new Image();
image.onload = () => {
w = image.width;
h = image.height;
contextMain.drawImage(image, 0, 0, w, h);
canvasDataInitial = contextMain.getImageData(0, 0, canvasMain.width, canvasMain.height);
drawData();
drawData();
setTimeout(drawData, 1000);
}
image.src = '';
<!doctype html>
<html>
<body>
<canvas id="main" width="200" height="200" ></canvas>
</body>
</html>
The answer is "Yes, it's confirmed". The code snippet above proves Chrome behaves differently and oddly. Reported to chromium buglist.
My application stop working in Chrome 104, 105. Can anyone confirm this issue?
steps:
transparentDataArray: Uint8ClampedArray = new Uint8ClampedArray(w, h);
insert some values, leave 0,0,0,0 for transparent points
putImageData on context
drawImage over another context holding an image
=> expected (and working until 104) - replaces only non-transparent points
=> chrome 104 - replace transparent points with white color
const canvasMain = document.getElementById('main');
const contextMain = canvasMain.getContext('2d');
const canvas2 = document.createElement('canvas')
const context2 = canvas2.getContext('2d');
const drawData = () => {
console.log("draw data")
contextMain.putImageData(canvasDataInitial, 0, 0);
const dataArray = new Uint8ClampedArray(w * h * 4);
for (let i = 0; i < w * h; i = i + 4) {
dataArray[i] = 0;
dataArray[i + 1] = 150;
dataArray[i + 2] = 35;
dataArray[i + 3] = i > w * h / 3 ? 0 : 255;
}
canvas2.width = w;
canvas2.height = h;
context2.putImageData(new ImageData(dataArray, w, h), 0, 0);
contextMain.drawImage(canvas2, 0, 0);
}
let canvasDataInitial;
let w,h;
const image = new Image();
image.onload = () => {
w = image.width;
h = image.height;
contextMain.drawImage(image, 0, 0, w, h);
canvasDataInitial = contextMain.getImageData(0, 0, canvasMain.width, canvasMain.height);
drawData();
drawData();
setTimeout(drawData, 1000);
}
image.src = '';
<!doctype html>
<html>
<body>
<canvas id="main" width="200" height="200" ></canvas>
</body>
</html>
The answer is "Yes, it's confirmed". The code snippet above proves Chrome behaves differently and oddly. Reported to chromium buglist.
I'm trying to get a spectroscope (sine wave) to show while an audio file is playing. The audio file plays fine but the graph only shows a flat line:
function play() {
var audio = document.querySelector('audio');
audio.load();
audio.play();
var context = new (window.AudioContext || window.webkitAudioContext)();
var source = context.createMediaElementSource(audio);
var analyser = context.createAnalyser();
analyser.minDecibels = -90;
analyser.maxDecibels = -10;
analyser.smoothingTimeConstant = 0.85;
source.connect(context.destination);
var canvas = document.querySelector('canvas');
var canvasCtx = canvas.getContext('2d');
var drawVisual;
var WIDTH = canvas.width;
var HEIGHT = canvas.height;
analyser.fftSize = 2048;
var bufferLength = analyser.fftSize;
var dataArray = new Uint8Array(bufferLength);
canvasCtx.clearRect(0, 0, WIDTH, HEIGHT);
var draw = function() {
drawVisual = requestAnimationFrame(draw);
analyser.getByteTimeDomainData(dataArray);
canvasCtx.fillStyle = 'rgb(255, 255, 255)';
canvasCtx.fillRect(0, 0, WIDTH, HEIGHT);
canvasCtx.lineWidth = 2;
canvasCtx.strokeStyle = 'rgb(255, 0, 255)';
canvasCtx.beginPath();
var sliceWidth = WIDTH / bufferLength;
var x = 0;
for(var i = 0; i < bufferLength; i++) {
var v = dataArray[i] / 128.0;
var y = v * HEIGHT / 2;
if(i === 0) {
canvasCtx.moveTo(x, y);
} else {
canvasCtx.lineTo(x, y);
}
x += sliceWidth;
}
canvasCtx.lineTo(canvas.width, canvas.height / 2);
canvasCtx.stroke();
};
draw();
}
<audio loop src="data:audio/ogg;base64,T2dnUwACAAAAAAAAAABiZQAAAAAAAFvMjyIBHgF2b3JiaXMAAAAAAUSsAAAAAAAAgLsAAAAAAAC4AU9nZ1MAAAAAAAAAAAAAYmUAAAEAAACaF1aWDzv/////////////////MgN2b3JiaXMrAAAAWGlwaC5PcmcgbGliVm9yYmlzIEkgMjAxMjAyMDMgKE9tbmlwcmVzZW50KQAAAAABBXZvcmJpcx9CQ1YBAAABABhjVClGmVLSSokZc5QxRplikkqJpYQWQkidcxRTqTnXnGusubUghBAaU1ApBZlSjlJpGWOQKQWZUhBLSSV0EjonnWMQW0nB1phri0G2HIQNmlJMKcSUUopCCBlTjCnFlFJKQgcldA465hxTjkooQbicc6u1lpZji6l0kkrnJGRMQkgphZJKB6VTTkJINZbWUikdc1JSakHoIIQQQrYghA2C0JBVAAABAMBAEBqyCgBQAAAQiqEYigKEhqwCADIAAASgKI7iKI4jOZJjSRYQGrIKAAACABAAAMBwFEmRFMmxJEvSLEvTRFFVfdU2VVX2dV3XdV3XdSA0ZBUAAAEAQEinmaUaIMIMZBgIDVkFACAAAABGKMIQA0JDVgEAAAEAAGIoOYgmtOZ8c46DZjloKsXmdHAi1eZJbirm5pxzzjknm3PGOOecc4pyZjFoJrTmnHMSg2YpaCa05pxznsTmQWuqtOacc8Y5p4NxRhjnnHOatOZBajbW5pxzFrSmOWouxeaccyLl5kltLtXmnHPOOeecc84555xzqhenc3BOOOecc6L25lpuQhfnnHM+Gad7c0I455xzzjnnnHPOOeecc4LQkFUAABAAAEEYNoZxpyBIn6OBGEWIacikB92jwyRoDHIKqUejo5FS6iCUVMZJKZ0gNGQVAAAIAAAhhBRSSCGFFFJIIYUUUoghhhhiyCmnnIIKKqmkoooyyiyzzDLLLLPMMuuws8467DDEEEMMrbQSS0211VhjrbnnnGsO0lpprbXWSimllFJKKQgNWQUAgAAAEAgZZJBBRiGFFFKIIaaccsopqKACQkNWAQCAAAACAAAAPMlzREd0REd0REd0REd0RMdzPEeUREmUREm0TMvUTE8VVdWVXVvWZd32bWEXdt33dd/3dePXhWFZlmVZlmVZlmVZlmVZlmVZgtCQVQAACAAAgBBCCCGFFFJIIaUYY8wx56CTUEIgNGQVAAAIACAAAADAURzFcSRHciTJkixJkzRLszzN0zxN9ERRFE3TVEVXdEXdtEXZlE3XdE3ZdFVZtV1Ztm3Z1m1flm3f933f933f933f933f93UdCA1ZBQBIAADoSI6kSIqkSI7jOJIkAaEhqwAAGQAAAQAoiqM4juNIkiRJlqRJnuVZomZqpmd6qqgCoSGrAABAAAABAAAAAAAomuIppuIpouI5oiNKomVaoqZqriibsuu6ruu6ruu6ruu6ruu6ruu6ruu6ruu6ruu6ruu6ruu6ruu6LhAasgoAkAAA0JEcyZEcSZEUSZEcyQFCQ1YBADIAAAIAcAzHkBTJsSxL0zzN0zxN9ERP9ExPFV3RBUJDVgEAgAAAAgAAAAAAMCTDUixHczRJlFRLtVRNtVRLFVVPVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVNU3TNE0gNGQlAAAEAMBijcHlICElJeXeEMIQk54xJiG1XiEEkZLeMQYVg54yogxy3kLjEIMeCA1ZEQBEAQAAxiDHEHPIOUepkxI556h0lBrnHKWOUmcpxZhizSiV2FKsjXOOUketo5RiLC12lFKNqcYCAAACHAAAAiyEQkNWBABRAACEMUgppBRijDmnnEOMKeeYc4Yx5hxzjjnnoHRSKuecdE5KxBhzjjmnnHNSOieVc05KJ6EAAIAABwCAAAuh0JAVAUCcAIBBkjxP8jRRlDRPFEVTdF1RNF3X8jzV9ExTVT3RVFVTVW3ZVFVZljzPND3TVFXPNFXVVFVZNlVVlkVV1W3TdXXbdFXdlm3b911bFnZRVW3dVF3bN1XX9l3Z9n1Z1nVj8jxV9UzTdT3TdGXVdW1bdV1d90xTlk3XlWXTdW3blWVdd2XZ9zXTdF3TVWXZdF3ZdmVXt11Z9n3TdYXflWVfV2VZGHZd94Vb15XldF3dV2VXN1ZZ9n1b14Xh1nVhmTxPVT3TdF3PNF1XdV1fV13X1jXTlGXTdW3ZVF1ZdmXZ911X1nXPNGXZdF3bNl1Xll1Z9n1XlnXddF1fV2VZ+FVX9nVZ15Xh1m3hN13X91VZ9oVXlnXh1nVhuXVdGD5V9X1TdoXhdGXf14XfWW5dOJbRdX1hlW3hWGVZOX7hWJbd95VldF1fWG3ZGFZZFoZf+J3l9n3jeHVdGW7d58y67wzH76T7ytPVbWOZfd1ZZl93juEYOr/w46mqr5uuKwynLAu/7evGs/u+soyu6/uqLAu/KtvCseu+8/y+sCyj7PrCasvCsNq2Mdy+biy/cBzLa+vKMeu+UbZ1fF94CsPzdHVdeWZdx/Z1dONHOH7KAACAAQcAgAATykChISsCgDgBAI8kiaJkWaIoWZYoiqbouqJouq6kaaapaZ5pWppnmqZpqrIpmq4saZppWp5mmpqnmaZomq5rmqasiqYpy6ZqyrJpmrLsurJtu65s26JpyrJpmrJsmqYsu7Kr267s6rqkWaapeZ5pap5nmqZqyrJpmq6reZ5qep5oqp4oqqpqqqqtqqosW55nmproqaYniqpqqqatmqoqy6aq2rJpqrZsqqptu6rs+rJt67ppqrJtqqYtm6pq267s6rIs27ovaZppap5nmprnmaZpmrJsmqorW56nmp4oqqrmiaZqqqosm6aqypbnmaoniqrqiZ5rmqoqy6Zq2qppmrZsqqotm6Yqy65t+77ryrJuqqpsm6pq66ZqyrJsy77vyqruiqYpy6aq2rJpqrIt27Lvy7Ks+6JpyrJpqrJtqqouy7JtG7Ns+7pomrJtqqYtm6oq27It+7os27rvyq5vq6qs67It+7ru+q5w67owvLJs+6qs+ror27pv6zLb9n1E05RlUzVt21RVWXZl2fZl2/Z90TRtW1VVWzZN1bZlWfZ9WbZtYTRN2TZVVdZN1bRtWZZtYbZl4XZl2bdlW/Z115V1X9d949dl3ea6su3Lsq37qqv6tu77wnDrrvAKAAAYcAAACDChDBQashIAiAIAAIxhjDEIjVLOOQehUco55yBkzkEIIZXMOQghlJI5B6GUlDLnIJSSUgihlJRaCyGUlFJrBQAAFDgAAATYoCmxOEChISsBgFQAAIPjWJbnmaJq2rJjSZ4niqqpqrbtSJbniaJpqqptW54niqapqq7r65rniaJpqqrr6rpomqapqq7ruroumqKpqqrrurKum6aqqq4ru7Ls66aqqqrryq4s+8Kquq4ry7Jt68Kwqq7ryrJs27Zv3Lqu677v+8KRreu6LvzCMQxHAQDgCQ4AQAU2rI5wUjQWWGjISgAgAwCAMAYhgxBCBiGEkFJKIaWUEgAAMOAAABBgQhkoNGRFABAnAAAYQymklFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSCmllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSqmklFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimVUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFIKAJCKcACQejChDBQashIASAUAAIxRSinGnIMQMeYYY9BJKClizDnGHJSSUuUchBBSaS23yjkIIaTUUm2Zc1JaizHmGDPnpKQUW805h1JSi7HmmmvupLRWa64151paqzXXnHPNubQWa64515xzyzHXnHPOOecYc84555xzzgUA4DQ4AIAe2LA6wknRWGChISsBgFQAAAIZpRhzzjnoEFKMOecchBAihRhzzjkIIVSMOeccdBBCqBhzzDkIIYSQOecchBBCCCFzDjroIIQQQgcdhBBCCKGUzkEIIYQQSighhBBCCCGEEDoIIYQQQgghhBBCCCGEUkoIIYQQQgmhlFAAAGCBAwBAgA2rI5wUjQUWGrISAAACAIAclqBSzoRBjkGPDUHKUTMNQkw50ZliTmozFVOQORCddBIZakHZXjILAACAIAAgwAQQGCAo+EIIiDEAAEGIzBAJhVWwwKAMGhzmAcADRIREAJCYoEi7uIAuA1zQxV0HQghCEIJYHEABCTg44YYn3vCEG5ygU1TqIAAAAAAADADgAQDgoAAiIpqrsLjAyNDY4OjwCAAAAAAAFgD4AAA4PoCIiOYqLC4wMjQ2ODo8AgAAAAAAAAAAgICAAAAAAABAAAAAgIBPZ2dTAAQiVgAAAAAAAGJlAAACAAAAPuePCyUVNCgpJykqMhMUFBQfHwEBAQEBAQEBAQEBAQEdEzctLSorKy05DN3v80/tzuTbDAAIjkoywUfOEcIE+hpP+uN/gfj5tZru2igfgIQDAAAAAAAAQAEAoAc3r//fwfNvv/rq+Zf287YCJEmyCLVtAF4r78vbHxDkgw/cXzRKwAMAfv4QAL4OAAAAAAAAAAAAAJ7KAACUfwBeK+/L2x8Q5IMP3F80SoEHAPz8oQC8agAAAAAAAAAAAAB+NgsAUPcKAF4r78vbH1DkAyvuzxplAiQcAAAAAAAAAGoAVgAA8L/mpgAA8WWjAF4r7+PbPwDi/PbA/a1EKfAAgH9/EYCtAAAAAAAAAAAAAFCvUQAAPBgAXivvy9sfIPLBF+7PGiXgJACAbwAAAAAAAAAAAACAmmMAFHhiAACgMpUAFhtv8kvCS8N+Pj8wNzFQwkPX148e1XWNnjoAHQAAAAAAAAAIn45Uqd4jhK0agAfgDgFM7+99+cuBAAAA4BkbeKnpdxEAVO/v4xZaAwAAAJwRcO718GsOSABM7+99+VsDAAAA+lPC93HqWwI0AETv7/NrWgMAAAD6DwF3X5ddAkgAbGHK5YvHI8F64jVDQ8WPV23Gj1dtTo+/76dH77FDAaRMdby4jQQ2sj3eJY6lXhSNpV6sjN1drMzdlStuhwAKDg4OBgAAAAAAAAAALNkvru5u3yUwvf56EPWqzemN99h41eb0xntsPANM6+/jO5Ly/rGyAQAAQJOIESgAOhuP9CXJluV/OJCf5ewtPDjPT58+PSfsawCADigAAAAAAADak7cmS87/Oz6JMcYYc4wKUXsAAF4rj+vbH6DbB3457i+aCE4CAPgGAAoAAAAAAAAAAKDmGAD0eGIAAACqC4MBAF4rj+vbH6DbB3457i+aCE4CALgGgAIAAAAAAAAAAPCzAgBnfDUAAADV1+EBAF4rj8v7f93N+f2X4/46oznBAwD+9h0A/C0AAAAAAAAAAAAAdwEAAFj1AF4r9/uHP4CwD3y63Z81mgtOAgB4AAAAAAAAAAAAAAAYTQBwemwKAACMxwNeK4/r2x+A2wd+Oe4vGs0DJwEA/A4AAAAAAAAAAAAAlJ0AgNMwIwAAMK46XiuP41vCSzfnt98dz28lugA8AODfHw4Afk4AAAAAAAAAoAjVA1ToBgAAWP4BPro26EcSKvkNW8cpZ2/hoTcGkM/TAQAjoVAAFAoAAOHdL++QeFPqn83NVQAoN6EBEgCPADSACYAC"></audio>
<br>
<canvas width="640" height="100"></canvas>
<br>
<button onclick="play()">Play</button>
Note the audio source is hardcoded here to avoid CORS issues; normally audio.source would be set on line 3 immediately after the audio var is initialized, e.g.
var audio = document.querySelector('audio');
audio.src = 'https://www.example.com/foo.mp3';
The AnalyserNode is not connected yet. It needs to get the signal as an input which you want to analyze.
You can achieve that by changing the following line ...
source.connect(context.destination);
... into ...
source.connect(analyser).connect(context.destination);
i have a Pronlem with large Image Files to display it in a Canvas with FileReader. With small Images it works fine, in Chrome with large images too. But in Firefox it displays nothing and after toDataUrl its gives a black Image. The Image size is 5580 * 8333 (8mb).
If i load the dataUrl from FileReader in a Image Tag it works too.
var reader = new FileReader();
reader.onloadend = function () {
preview.src = reader.result;
console.log(reader.result);
var canvas = document.getElementById("resize");
var ctx = canvas.getContext("2d");
var image = new Image();
image.src = reader.result;
image.onload = function() {
var MAX_WIDTH = 400;
var MAX_HEIGHT = 300;
var tempW = image.width;
var tempH = image.height;
if (tempW > tempH) {
if (tempW > MAX_WIDTH) {
tempH *= MAX_WIDTH / tempW;
tempW = MAX_WIDTH;
}
} else {
if (tempH > MAX_HEIGHT) {
tempW *= MAX_HEIGHT / tempH;
tempH = MAX_HEIGHT;
}
}
image.width=tempW;
image.height=tempH;
canvas.width = tempW;
canvas.height = tempH;
ctx.drawImage(image, 0, 0, tempW, tempH);
};
}
if (file) {
reader.readAsDataURL(file);
} else {
preview.src = "";
}
}
Thanks for help
I have a html5 canvas that draws a sound wave. I have set the background as an background image, however, I want this background image to repeat. Can anyone tell me how I would do this and what I need to add into my code:
var backgroundImage = new Image();
backgroundImage.src = 'http://www.samskirrow.com/client-kyra/images/main-bg.jpg';
var canvas;
var context;
function init(c) {
canvas = document.getElementById(c);
context = canvas.getContext("2d");
soundManager.onready(function() {
initSound(clientID, playlistUrl);
});
aniloop();
}
function aniloop() {
requestAnimFrame(aniloop);
drawWave();
}
function drawWave() {
var step = 10;
var scale = 60;
// clear
context.drawImage(backgroundImage, 0, 0);
// left wave
context.beginPath();
context.moveTo(0, 256);
for ( var i = 0; i < 256; i++) {
context.lineTo(6 * i, 257 + waveLeft[i] * 80.);
}
context.lineWidth = 1;
context.strokeStyle = "#000";
context.stroke();
// right wave
context.beginPath();
context.moveTo(0, 256);
for ( var i = 0; i < 256; i++) {
context.lineTo(6 * i, 256 + waveRight[i] * 80.);
}
context.lineWidth = 1;
context.strokeStyle = "#000";
context.stroke();
}
function updateWave(sound) {
waveLeft = sound.waveformData.left;
}
return {
init : init
};
})();
You can see this code in action here:
http://www.samskirrow.com/client-kyra
Use the canvas' createPattern function
const canvas = document.getElementById("canvas"),
context = canvas.getContext("2d"),
img = new Image();
img.src = 'https://www.google.nl/images/srpr/logo3w.png';
img.addEventListener('load', () => {
const ptrn = context.createPattern(img, 'repeat'); // Create a pattern with this image, and set it to "repeat".
context.fillStyle = ptrn;
context.fillRect(0, 0, canvas.width, canvas.height); // context.fillRect(x, y, width, height);
})
<canvas id="canvas" width="600px" height="600px"></canvas>
(This is the fastest of the 2 samples).
Or, try a manual implementation:
const canvas = document.getElementById("canvas"),
context = canvas.getContext("2d"),
img = new Image();
img.src = 'https://www.google.nl/images/srpr/logo3w.png';
img.addEventListener('load', () => {
for (let w = 0; w < canvas.width; w += img.width) {
for (let h = 0; h < canvas.height; h += img.height) {
context.drawImage(img, w, h);
}
}
})
<canvas id="canvas" width="600px" height="600px"></canvas>