I am working on a project to predict soccer player values from a set of inputs. The data consists of about 19,000 rows and 8 columns (7 columns for input and 1 column for the target) all of numerical values.
I am using a fully connected Neural Network for the prediction but the problem is the loss is not decreasing as it should.
The loss is very large (1e+13) and doesn’t decrease as it should, it just fluctuates.
This is the function I am using to run the model:
def gradient_descent(model, learning_rate, num_epochs, data_loader, criterion):
losses = []
optimizer = torch.optim.Adam(model.parameters())
for epoch in range(num_epochs): # one epoch
for inputs, outputs in data_loader: # one iteration
inputs, outputs = inputs.to(torch.float32), outputs.to(torch.float32)
logits = model(inputs)
loss = criterion(torch.squeeze(logits), outputs) # forward-pass
optimizer.zero_grad() # zero out the gradients
loss.backward() # compute the gradients (backward-pass)
optimizer.step() # take one step
losses.append(loss.item())
loss = sum(losses[-len(data_loader):]) / len(data_loader)
print(f'Epoch #{epoch}: Loss={loss:.3e}')
return losses
The model is fully connected neural network with 4 hidden layers, each with 7 neurons. input layer has 7 neurons and output has 1. I am using MSE for loss function. I tried changing the learning rate but it is still bad.
What could be the reason behind this?
Thank you!
It is difficult to diagnose your problem from the information you provided, but I'll try to point you in some useful directions.
Data Normalization:
The way we initialize the weights in deep NN has a significant effect on the training process. See, e.g.:
He, K., Zhang, X., Ren, S. and Sun, J., Delving deep into rectifiers: Surpassing human-level performance on imagenet classification (ICCV 2015).
Most initialization methods assume the inputs have zero mean and unit variance (or similar statistics). If your inputs violate these assumptions, you will find it difficult to train. See, e.g., this post.
Normalize the Targets:
You are trying to solve a regression problem (MSE loss), it might be the case that your targets are poorly scaled and causing very large loss values. Try and normalize the targets to span a more compact range.
Learning Rate:
Try and adjust your learning rate: both increasing it and decreasing it by orders of magnitude.
Related
I'm using Resnet50 model to classify images into two classes: normal cells and cancer cells.
so I want to to increase the accuracy but i don't know what to modify.
# we are using resnet50 for transfer learnin here. So we have imported it
from tensorflow.keras.applications import resnet50
# initializing model with weights='imagenet'i.e. we are carring its original weights
model_name='resnet50'
base_model=resnet50.ResNet50(include_top=False, weights="imagenet",input_shape=img_shape, pooling='max')
last_layer=base_model.output # we are taking last layer of the model
# Add flatten layer: we are extending Neural Network by adding flattn layer
flatten=layers.Flatten()(last_layer)
# Add dense layer
dense1=layers.Dense(100,activation='relu')(flatten)
# Add dense layer to the final output layer
output_layer=layers.Dense(class_count,activation='softmax')(flatten)
# Creating modle with input and output layer
model=Model(inputs=base_model.inputs,outputs=output_layer)
model.compile(Adamax(learning_rate=.001), loss='categorical_crossentropy', metrics=['accuracy'])
There were 48 errors in 534 test cases Model accuracy= 91.01 %
Also what do you think about the results of the graph?
this is the classification report
i got good results but is there a possibility to increase accuracy more than that?
This is a broad question as there are many ways one can attempt to generally improve the network's accuracy. some of which may be
Increase the dimension of the layers that are learned in transfer learning (make sure not to overfit)
Use transfer learning with Convolution layers and not MLP
let the optimization algorithm choose the learning rate on its own
Play with additional augmentations to the dataset
and the list goes on.
Also, if possible, I would suggest comparing your results to other publicly available benchmarks - by doing so you might understand the upper bounds of the accuracies better
I'm interested in fine-tuning a Mask-RCNN model that I'm using for instance segmentation. Currently I have trained the model for 6 epochs and the various Mask-RCNN losses are as follows:
The reason I'm stopping is that the COCO evaluation metrics seem to have dipped in the last epoch:
I know this is a far reaching question, but I'm looking to gain some intuition of how to understand which parameters are going to be the most impactful in improving the evaluation metrics. I understand there are three places to consider:
Should I be looking at batch size, learning rate and momentum, this uses an SGD optimizer with a learning rate of 1e-4 and batch size 2?
Should I be looking at using more training data or adding augmentation (I don't currently use any) and my dataset is current pretty large 40K images?
Should I be looking at the specific MaskRCNN parameters?
I thing I'll likely be asked to me more specific on what I want to improve so let me say that I would like to improve the recall of the individual masks. The model is performing well but doesn't quite capture the full extend of what I would like it to. I'm also leaving out details of the specific learning problem as I'd like to gain intuition of how to approach this in general.
A couple of notes:
6 epochs are too small for the network to converge even if you use a pre-trained network—especially such a big one as resnet50. I think you need at least 50 epochs. On a pre-trained resnet18 I started to get good results after 30 epochs, resnet34 needed +10-20 epochs and your resnet50 + 40k images of the train set - definitely need more epochs than 6;
definitely use a pre-trained network;
in my experience, I failed to get the results I like with SGD. I started using AdamW + ReduceLROnPlateau scheduler. The network converges quite fast, like 50-60% AP on epoch 7 or 8 but then it comes up to 80-85 after 50-60 epochs using very small improvements from epoch to epoch, only if the LR is small enough. You must be familiar with the gradient descent notion. I used to think of it as if you have more augmentation, your "hill" is covered with "boulders" that you have to be able to bypass and this is only possible if you control the LR. Additionally, AdamW helps with the overfitting.
This is how I do it. For networks with higher input resolution (your input images are scaled on input by the net itself), I use higher LR.
init_lr = 0.00005
weight_decay = init_lr * 100
optimizer = torch.optim.AdamW(params, lr=init_lr, weight_decay=weight_decay)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, verbose=True, patience=3, factor=0.75)
for epoch in range(epochs):
# train for one epoch, printing every 10 iterations
metric_logger = train_one_epoch(model, optimizer, train_loader, scaler, device,
epoch, print_freq=10)
scheduler.step(metric_logger.loss.global_avg)
optimizer.param_groups[0]["weight_decay"] = optimizer.param_groups[0]["lr"] * 100
# scheduler.step()
# evaluate on the test dataset
evaluate(model, test_loader, device=device)
print("[INFO] serializing model to '{}' ...".format(args["model"]))
save_and_print_size_of_model(model, args["model"], script=False)
Find such an LR and weight decay that the training exhausts LR to a very small value, like 1/10 of your initial LR, at the end of the training. If you will have a plateau too often, the scheduler quickly brings it to very small values and the network will learn nothing all the rest of the epochs.
Your plots indicate that your LR is too high at some point in the training, the network stops training and then AP is going down. You need constant improvements, even small ones. The more network trains the more subtle details it learns about your domain and the smaller the learning rate. Imho, constant LR will not allow doing that correctly.
anchor generator settings. Here is how I initialize the network.
def get_maskrcnn_resnet_model(name, num_classes, pretrained, res='normal'):
print('Using maskrcnn with {} backbone...'.format(name))
backbone = resnet_fpn_backbone(name, pretrained=pretrained, trainable_layers=5)
sizes = ((4,), (8,), (16,), (32,), (64,))
aspect_ratios = ((0.25, 0.5, 1.0, 2.0, 4.0),) * len(sizes)
anchor_generator = AnchorGenerator(
sizes=sizes, aspect_ratios=aspect_ratios
)
roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0', '1', '2', '3'],
output_size=7, sampling_ratio=2)
default_min_size = 800
default_max_size = 1333
if res == 'low':
min_size = int(default_min_size / 1.25)
max_size = int(default_max_size / 1.25)
elif res == 'normal':
min_size = default_min_size
max_size = default_max_size
elif res == 'high':
min_size = int(default_min_size * 1.25)
max_size = int(default_max_size * 1.25)
else:
raise ValueError('Invalid res={} param'.format(res))
model = MaskRCNN(backbone, min_size=min_size, max_size=max_size, num_classes=num_classes,
rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler)
model.roi_heads.detections_per_img = 512
return model
I need to find small objects here why I use such anchor params.
classes in-balancing issue. If you have only your object and bg - no problem. If you have more classes then make sure that your training split (as 80% for train and 20% for the test) is more or less precisely applied to all the classes used in your particular training.
Good luck!
I am beginner in deep learning.
I am using this dataset and I want my network to detect keypoints of a hand.
How can I make my output layer's nodes to be in range [-1, 1] (range of normalized 2D points)?
Another problem is when I train for more than 1 epoch the loss gets negative values
criterion: torch.nn.MultiLabelSoftMarginLoss() and optimizer: torch.optim.SGD()
Here u can find my repo
net = nnModel.Net()
net = net.to(device)
criterion = nn.MultiLabelSoftMarginLoss()
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=decay_rate)
You can use the Tanh activation function, since the image of the function lies in [-1, 1].
The problem of predicting key-points in an image is more of a regression problem than a classification problem (especially if you're making your model outputs + targets fall within a continuous interval). Therefore, I suggest you use the L2 Loss.
In fact, it could be a good exercise for you to determine which loss function that is appropriate for regression problems provides the lowest expected generalization error using cross-validation. There's several such functions available in PyTorch.
One way I can think of is to use torch.nn.Sigmoid which produces outputs in [0,1] range and scale outputs to [-1,1] using 2*x-1 transformation.
I trained one regression network using resnet50 as backbone. The input of the network is image whose size is 224*224*3, the output of the network is one value, varying from 0 to 1.
but the netwrok can not converge, no matter I use sigmoid or relu as output layer's activation. mae or mse as loss function.
For exampple, I use resnet50 as backbone,mae as loss function, sigmoid is the activation function of output layer. SGD as optimizer. The training loss would be:
Epoch 1 training loss is 0.4900, val_loss is 0.4797
Epoch 2 training loss is 0.4923, val_loss is 0.4794
Epoch 3 training loss is 0.4923, val_loss is 0.4783
...
Epoch 35 training loss is 0.4923, val_loss is 0.4771
The training loss would not change, it is constant 0.4923. the val_loss is always about 0.47. I tested differentoptimizer, learning rate. the network is still not converge.
When I use VGG16 or Mobilenet as backbone, the network converged.
Could anyone give me some suggestions about how I can fix this problem.
Can you somehow validate if the Resnet50 backbone is correctly implemented. Maybe try to train it on MNIST and see if it works in general.
It kinda seems to me that the ResNet varaint just outputs some mean value instead of learning the actual problem.
Can you give some more information on what you want to achieve. How your regression looks like and what input is expected from the backbone. Also you might want to have a look at similar work (if that exists) and read what architectures they were using and what hyperparameters.
After going through the Caffe tutorial here: http://caffe.berkeleyvision.org/gathered/examples/mnist.html
I am really confused about the different (and efficient) model using in this tutorial, which is defined here: https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_train_test.prototxt
As I understand, Convolutional layer in Caffe simply calculate the sum of Wx+b for each input, without applying any activation function. If we would like to add the activation function, we should add another layer immediately below that convolutional layer, like Sigmoid, Tanh, or Relu layer. Any paper/tutorial I read on the internet applies the activation function to the neuron units.
It leaves me a big question mark as we only can see the Convolutional layers and Pooling layers interleaving in the model. I hope someone can give me an explanation.
As a site note, another doubt for me is the max_iter in this solver:
https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_solver.prototxt
We have 60.000 images for training, 10.000 images for testing. So why does the max_iter here only 10.000 (and it still can get > 99% accuracy rate)? What does Caffe do in each iteration?
Actually, I'm not so sure if the accuracy rate is the total correct prediction/test size.
I'm very amazed of this example, as I haven't found any example, framework that can achieve this high accuracy rate in that very short time (only 5 mins to get >99% accuracy rate). Hence, I doubt there should be something I misunderstood.
Thanks.
Caffe uses batch processing. The max_iter is 10,000 because the batch_size is 64. No of epochs = (batch_size x max_iter)/No of train samples. So the number of epochs is nearly 10. The accuracy is calculated on the test data. And yes, the accuracy of the model is indeed >99% as the dataset is not very complicated.
For your question about the missing activation layers, you are correct. The model in the tutorial is missing activation layers. This seems to be an oversight of the tutorial. For the real LeNet-5 model, there should be activation functions following the convolution layers. For MNIST, the model still works surprisingly well without the additional activation layers.
For reference, in Le Cun's 2001 paper, it states:
As in classical neural networks, units in layers up to F6 compute a dot product between their input vector and their weight vector, to which a bias is added. This weighted sum, denoted a_i, for unit i, is then passed through a sigmoid squashing function to produce the state of unit i ...
F6 is the "blob" between the two fully connected layers. Hence the first fully connected layers should have an activation function applied (the tutorial uses ReLU activation functions instead of sigmoid).
MNIST is the hello world example for neural networks. It is very simple to today's standard. A single fully connected layer can solve the problem with accuracy of about 92%. Lenet-5 is a big improvement over this example.