Is BertTokenizer similar to word embedding? - deep-learning

The idea of using BertTokenizer from huggingface really confuses me.
When I use
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
tokenizer.encode_plus("Hello")
Does the result is somewhat similar to when I pass
a one-hot vector representing "Hello" to a learning embedding matrix?
How is
BertTokenizer.from_pretrained("bert-base-uncased")
different from
BertTokenizer.from_pretrained("bert-**large**-uncased")
and other pretrained?

The encode_plus and encode functions tokenize your texts and prepare them in a proper input format of the BERT model. Therefore you can see them similar to the one-hot vector in your provided example.
The encode_plus returns a BatchEncoding consisting of input_ids, token_type_ids, and attention_mask.
The pre-trained model differs based on the number of encoder layers. The base model has 12 encoders, and the large model has 24 layers of encoders.

Related

sequence to sequence model using pytorch

I have dataset (sequence to sequence), each sample input is seq of charterers (combination from from 20 characters and max length 2166) and out is list of charterers (combination of three characters G,H,B). for example OIREDSSSRTTT ----> GGGHHHHBHBBB
I would like to do simple pytorch model that work in that type of dataset. Model that can predict sequence of classes. I would appreciate any suggestions or links for simple mode that do the same?
Thanks
If the output sequence always has the same length as the input sequence, you might want to use transformer encoder, because it basically transforms the inputs with attention to the context. Also you can try to use anything that is used to tagging: BiLSTM, BiGRU, etc.
If you want your model to be able to predict sequences of different length (not necessary the same as input length), look at some encoder-decoder models, such as vanilla transformer.
You can start with the sequence tagging model from PyTorch tutorial https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html .
As #Ilya Fedorov said, you can move to transformer models for potentially better performance.

One-hot encoding to word2vec embedding

I'm trying to create vectors for categorical information that I have at hand. This information is intended to be used for aiding seq2seq network for NLP purposes (like summarization).
To get the idea, maybe an example would be of help:
Sample Text: shark attacks off Florida in a 1-hour span
And suppose that we have this hypothetical categorical information:
1. [animal, shark, sea, ocean]
2. [animal, tiger, jungle, mountains]
...
19. [animal, eagle, sky, mountains]
I want to feed sample text to an LSTM network token-by-token (like seq2seq networks). I'm using pre-trained GloVe embeddings as my original embeddings which are fed into the network, but also want to concatenate a dense vector to each token denoting its category.
For now, I know that I can simply use the one-hot embeddings (0-1 binary). So, for example, the first input (for shark) to the RNN network would be:
# GloVe embeddings of shark + one-hot encoding for shark, + means concatenation
[-0.323 0.213 ... -0.134 0.934 0.031 ] + [1 0 0 0 0 ... 0 0 1]
The problem is that I have an extreme number of categories out there (around 20,000). After searching over the Internet, it seemed to me that people suggest using word2vec instead of one-hots. But, I can't get the underlying idea of how word2vec can demonstrate the categorical features in this case. Does anybody have a more clear idea?
Word2Vec can't be used for classification. It is just the underlying algorithm.
For classification you can use Doc2Vec or something similar.
It basically takes a list of documents and each has unique id assigned to it. After the training it builds relations between the documents similar to those which word2vec builds for the words. Then when you give it an unknown document it will tell you the top n most similar, and if your documents have previously defined tags you can assume that the unknown document can be labeled the same way.

ML Model inputs and outputs analogy

As I learn more and more about ML (I am a mobile DEV) I'm starting to form an analogy in my head. I would like the communities opinion / validation.
As a front end DEV you have a backend and an API that you can make requests to. The standard format for the inputs and outputs to the API is JSON.
I'm running into a problem with ML Models that I am trying to use where I don't know how to read the expected input (API) and I don't know how to decode the expected output.
So far I my experience has been fragmented because some models say "Give me an image of [1,2,120,120]" or something like that.
To analogize, is there a unified way to define inputs and outputs for a ML model like JSON unifies the inputs and outputs for an backend API?
If so, what are some rules one must follow to encode and decode data into this format?
Assuming this "ML Model" is in the context of running an input through say a trained pytorch model's forward pass to get an output, the unified way to define inputs and outputs for an ML model are through Tensors. Tensors are essentially a multi-dimensional matrix containing elements of a single data type. Think multi-dimensional lists with a single data type.
Tensors:MLModels::JSON:WebAPI
An Example using an Object Detector
Model
Let's say your model example with the image is an object detector model that takes in an image as input and outputs either dog or cat
The input would usually be:
A tensor representation of an Image with the shape of [1, 2, 120, 120] where 1 represents the batch size, 2 is the dimension of your rgb channels, and 120x120 is the width and height of an image.
The output would usually be:
A normalized 2 dimensional tensor like [0.7, 0.3] where index 0 represents the probability of the image depicting a dog and index 1 represents the probability it's a cat.
Encoding and Decoding
Decoding the output to a string like "dog" or "cat" is obvious.
Encoding an image is slightly less obvious. At its heart, the format
of an image is that of a tensor...a multi-dimensional matrix
containing a single datatype. So is still intuitive to encode an
image in the form of a JPEG or PNG to a tensor representation through
the rgb channel dimensions and the pixel values for each channel.
Typically image files are loaded in using libraries and methods like
the python imaging library and pytorch's
torchvision.transforms.ToTensor().
This example is very specific to an object detector type model, but most supervised ML models will output a tensor like the above or a one-hot label. Most ML models in general will always have data inputs and outputs that can be represented as Tensors.

Does any H2O algorithm support multi-label classification?

Is deep learning model supports multi-label classification problem or any other algorithms in H2O?
Orginal Response Variable -Tags:
apps, email, mail
finance,freelancers,contractors,zen99
genomes
gogovan
brazil,china,cloudflare
hauling,service,moving
ferguson,crowdfunding,beacon
cms,naytev
y,combinator
in,store,
conversion,logic,ad,attribution
After mapping them on the keys of the dictionary:
Then
Response variable look like this:
[74]
[156, 89]
[153, 13, 133, 40]
[150]
[474, 277, 113]
[181, 117]
[15, 87, 8, 11]
Thanks
No, H2O only contains algorithms that learn to predict a single response variable at a time. You could turn each unique combination into a single class and train a multi-class model that way, or predict each class with a separate model.
Any algorithm that creates a model that gives you "finance,freelancers,contractors,zen99" for one set of inputs, and "cms,naytev" for another set of inputs is horribly over-fitted. You need to take a step back and think about what your actual question is.
But in lieu of that, here is one idea: train some word embeddings (or use some pre-trained ones) on your answer words. You could then average the vectors for each set of values, and hope this gives you a good numeric representation of the "topic". You then need to turn your, say, 100 dimensional averaged word vector into a single number (PCA comes to mind). And now you have a single number that you can give to a machine learning algorithm, and that it can predict.
You still have a problem: having predicted a number, how do you turn that number into a 100-dim vector, and from there in to a topic, and from there into topic words? Tricky, but maybe not impossible.
(As an aside, if you turn the above "single number" into a factor, and have the machine learning model do a categorization, to predicting the most similar topic to those it has seen before... you've basically gone full circle and will get a model identical to the one you started with that has too many classes.)

How to massage inputs into Keras framework?

I am new to keras and despite reading the documentation and the examples folder in keras, I'm still struggling with how to fit everything together.
In particular, I want to start with a simple task: I have a sequence of tokens, where each token has exactly one label. I have a lot training data like this - practically infinite, as I can generate more (token, label) training pairs as needed.
I want to build a network to predict labels given tokens. The number of tokens must always be the same as the number of labels (one token = one label).
And I want this to be based on all surrounding tokens, say within the same line or sentence or window -- not just on the preceding tokens.
How far I got on my own:
created the training numpy vectors, where I converted each sentence into a token-vector and label-vector (of same length), using a token-to-int and label-to-int mappings
wrote a model using categorical_crossentropy and one LSTM layer, based on https://github.com/fchollet/keras/blob/master/examples/lstm_text_generation.py.
Now struggling with:
All the input_dim and input_shape parameters... since each sentence has a different length (different number of tokens and labels in it), what should I put as input_dim for the input layer?
How to tell the network to use the entire token sentence for prediction, not just one token? How to predict a whole sequence of labels given a sequence of tokens, rather than just label based on previous tokens?
Does splitting the text into sentences or windows make any sense? Or can I just pass a vector for the entire text as a single sequence? What is a "sequence"?
What are "time slices" and "time steps"? The documentation keeps mentioning that and I have no idea how that relates to my problem. What is "time" in keras?
Basically I have trouble connecting the concepts from the documentation like "time" or "sequence" to my problem. Issues like Keras#40 didn't make me any wiser.
Pointing to relevant examples on the web or code samples would be much appreciated. Not looking for academic articles.
Thanks!
If you have sequences of different length you can either pad them or use a stateful RNN implementation in which the activations are saved between batches. The former is the easiest and most used.
If you want to use future information when using RNNs you want to use a bidirectional model where you concatenate two RNN's moving in opposite directions. RNN will use a representation of all previous information when e.g. predicting.
If you have very long sentences it might be useful to sample a random sub-sequence and train on that. Fx 100 characters. This also helps with overfitting.
Time steps are your tokens. A sentence is a sequence of characters/tokens.
I've written an example of how I understand your problem but it's not tested so it might not run. Instead of using integers to represent your data I suggest one-hot encoding if it is possible and then use binary_crossentropy instead of mse.
from keras.models import Model
from keras.layers import Input, LSTM, TimeDistributed
from keras.preprocessing import sequence
# Make sure all sequences are of same length
X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
# The input shape is your sequence length and your token embedding size (which is 1)
inputs = Input(shape=(maxlen, 1))
# Build a bidirectional RNN
lstm_forward = LSTM(128)(inputs)
lstm_backward = LSTM(128, go_backwards=True)(inputs)
bidirectional_lstm = merge([lstm_forward, lstm_backward], mode='concat', concat_axis=2)
# Output each timestep into a fully connected layer with linear
# output to map to an integer
sequence_output = TimeDistributed(Dense(1, activation='linear'))(bidirectional_lstm)
# Dense(n_classes, activation='sigmoid') if you want to classify
model = Model(inputs, sequence_output)
model.compile('adam', 'mse')
model.fit(X_train, y_train)