MySQL Replication lag in slave due to Delete query - Row Based Replication - mysql

I have a delete query, which delete rows by chunk (each chunk 2000)
Delete from Table1 where last_refresh_time < {time value}
Here I want to delete the rows in the table which are not refreshed for last 5days.
Usually the delete will be around 10million rows. This process will be done once per-day in a little offtime.
This query executes little faster in Master, but due to ROW_BASED_REPLICATION the SLAVE is in heavy lag. As SLAVE - SQL_THREAD deletes each rows one by one from RELAY_LOG data.
We use READ_COMMITED isolation level,
Is it okay to change this query transaction alone to STATEMENT_BASED replication ?
will we face any issue?
In MySql, it is mentioned like below, can someone explain this will other transaction INSERT gets affected?
If you are using InnoDB tables and the transaction isolation level is READ COMMITTED or READ UNCOMMITTED, only row-based logging can be used. It is possible to change the logging format to STATEMENT, but doing so at runtime leads very rapidly to errors because InnoDB can no longer perform inserts
If other TRANSACTION INSERTS gets affected can we change ISOLATION LEVEL to REPEATABLE_READ for this DELETE QUERY TRANSACTION alone ? Is it recommended do like this?
Please share your views and Suggestions for this lag issue
Mysql - INNDOB Engine - 5.7.18

Don't do a single DELETE that removes 10M rows. Or 1M. Not even 100K.
Do the delete online. Yes, it is possible, and usually preferable.
Write a script that walks through the table 200 rows at a time. DELETE and COMMIT any "old" rows in that 200. Sleep for 1 second, then move on to the next 200. When it hits the end of the table, simply start over. (1K rows in a chunk may be OK.) Walk through the table via the PRIMARY KEY so that the effort to 'chunk' is minimized. Note that the 200 rows plus 1 second delay will let you get through the table in about 1 day, effectively as fast as your current code, but will much less interference.
More details: http://mysql.rjweb.org/doc.php/deletebig Note, especially, how it is careful to touch only N rows (N=200 or whatever) of the table per pass.
My suggestion helps avoid Replica lag in these ways
Lower count (200 vs 2000). That many 'events' will be dumped into the replication stream all at once. Hence, other events are stuck behind them.
Touch only 200 rows -- by using the PRIMARY KEY careful use of LIMIT, etc
"Sleep" between chunks -- The Primary primes the cache with an initial SELECT that is not replicated. Hence, in Row Based Replication, the Replica is likely to be caught off guard (rows to delete have not been cached). The Sleep gives it a chance to finish the deletes and handle other replication items before the next chunk comes.
Discussion: With Row Based Replication (which is preferable), a 10M DELETE will ship 10M 1-row deletes to the Replicas. This clogs replication, delays replication, etc. By breaking it into small chunks, such overhead has a reasonable impact on replication.
Don't worry about isolation mode, etc, simply commit each small chunk. 100 rows will easily be done in less than a second. Probably 1K will be that fast. 10M will certainly not.
You said "refreshed". Does this mean that the processing updates a timestamp in the table? And this happens at 'random' times for 'random' rows? And such an update can happen multiple times for a given row? If that is what you mean, then I do not recommend PARTITIONing, which is also discussed in the link above.
Note that I do not depend on an index on that timestamp, much less suggest partitioning by that timestamp. I want to avoid the overhead of updating such an index so rapidly. Walking through the table via the PK is a very good alternative.

Do you really need READ_COMMITED isolation level ? It's not actually standard and ACID.
But any way.
For this query you can change session isolation to REAPEATABLE_READ and use MIXED mode for binlog_format.
With that you will get STATEMENT base replication only for this session.
Maybe that table usage will better fit to noSQL tool like Mongodb and TTL index.

Related

MySQL - Update table rows without locking the rows

I have requirement where we need to update the row without holding the lock for the while updating.
Here is the details of the requirements, we will be running a batch processing on a table every 5 mins update blogs set is_visible=1 where some conditions this query as to run on millions of records so we don't want to block all the rows for write during updates.
I totally understand the implications of not having write locks which is fine for us because is_visible column will be updated only by this batch process no other thread wil update this column. On the other hand there will be lot of updates to other columns of the same table which we don't want to block
First of all, if you default on the InnoDB storage engine of MySQL, then there is no way you can update data without row locks except setting the transaction isolation level down to READ UNCOMMITTED by running
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
However, I don't think the database behavior is what you expect since the dirty read is allowed in this case. READ UNCOMMITTED is rarely useful in practice.
To complement the answer from #Tim, it is indeed a good idea to have a unique index on the column used in the where clause. However, please note as well that there is no absolute guarantee that the optimizer will eventually choose such execution plan using the index created. It may work or not work, depending on the case.
For your case, what you could do is to split the long transaction into multiple short transactions. Instead of updating millions of rows in one shot, scanning only thousands of rows each time would be better. The X locks are released when each short transaction commits or rollbacks, giving the concurrent updates the opportunity to go ahead.
By the way, I assume that your batch has lower priority than the other online processes, thus it could be scheduled out of peak hours to further minimize the impact.
P.S. The IX lock is not on the record itself, but attached to the higher-granularity table object. And even with REPEATABLE READ transaction isolation level, there is no gap lock when the query uses a unique index.
Best practice is to always acquire a specific lock when there is a chance that an update could happen concurrently with other transactions. If your storage engine be MyISAM, then MySQL will lock the entire table during an update, and there isn't much you can do about that. If the storage engine be InnoDB, then it is possible that MySQL would only put an exclusive IX lock on the records targeted by the update, but there are caveats to this being the case. The first thing you would do to try to achieve this would be a SELECT ... FOR UPDATE:
SELECT * FROM blogs WHERE <some conditions> FOR UPDATE;
In order to ensure that InnoDB only locks the records being updated, there needs to be a unique index on the column which appears in the WHERE clause. In the case of your query, assuming id were the column involved, it would have to be a primary key, or else you would need to create a unique index:
CREATE UNIQUE INDEX idx ON blogs (id);
Even with such an index, InnoDB may still apply gap locks on the records in between index values, to ensure that the REPEATABLE READ contract is enforced.
So, you may add an index on the column(s) involved in your WHERE clause to optimize the update on InnoDB.

How do I add millions of rows to a live production mysql table?

I'm looking to add about 7 million rows to a live production database table that gets 1-2 writes per second. Can I do this without locking the database for writes? I think so because the table uses InnoDB?
Are there other considerations or do I just write the insert statement and let it rip?
If you're using InnoDB, you don't need to do anything special.
Just run your inserts. InnoDB uses row level locking for these situations, it will not lock the entire table.
Of course your performance could still take a hit due to the parallel work.
To answer your other question:
"One confusion about transactions: If I am working on transaction A and a stack of writes B come in, do those writes get processed after I commit my transaction"
In general, no. It will not need to wait. This does depend if you are working within the same keyspace or not, and also what isolation level you are working within.

How to improve InnoDB's SELECT performance while INSERTing

We recently switched our tables to use InnoDB (from MyISAM) specifically so we could take advantage of the ability to make updates to our database while still allowing SELECT queries to occur (i.e. by not locking the entire table for each INSERT)
We have a cycle that runs weekly and INSERTS approximately 100 million rows using "INSERT INTO ... ON DUPLICATE KEY UPDATE ..."
We are fairly pleased with the current update performance of around 2000 insert/updates per second.
However, while this process is running, we have observed that regular queries take very long.
For example, this took about 5 minutes to execute:
SELECT itemid FROM items WHERE itemid = 950768
(When the INSERTs are not happening, the above query takes several milliseconds.)
Is there any way to force SELECT queries to take a higher priority? Otherwise, are there any parameters that I could change in the MySQL configuration that would improve the performance?
We would ideally perform these updates when traffic is low, but anything more than a couple seconds per SELECT query would seem to defeat the purpose of being able to simultaneously update and read from the database. I am looking for any suggestions.
We are using Amazon's RDS as our MySQL server.
Thanks!
I imagine you have already solved this nearly a year later :) but I thought I would chime in. According to MySQL's documentation on internal locking (as opposed to explicit, user-initiated locking):
Table updates are given higher priority than table retrievals. Therefore, when a lock is released, the lock is made available to the requests in the write lock queue and then to the requests in the read lock queue. This ensures that updates to a table are not “starved” even if there is heavy SELECT activity for the table. However, if you have many updates for a table, SELECT statements wait until there are no more updates.
So it sounds like your SELECT is getting queued up until your inserts/updates finish (or at least there's a pause.) Information on altering that priority can be found on MySQL's Table Locking Issues page.

Problematic performance with continuous UPDATE / INSERT in Mysql

Currently we have a database and a script which has 2 update and 1 select, 1 insert.
The problem is we have 20,000 People who run this script every hour. Which cause the mysql to run with 100% cpu.
For the insert, it's for logging, we want to log all the data to our mysql, but as the table scale up, application become slower and slower. We are running on InnoDB, but some people say it should be MyISAM. What should we use? In this log table, we do sometimes pull out the log for statistical purpose. 40->50 times a day only.
Our solution is to use Gearman [http://gearman.org/] to delay insert to the database. But how about the update.
We need to update 2 table, 1 from the customer to update the balance(balance = balance -1), and the other is to update the count from another table.
How should we make this faster and more CPU efficient?
Thank you
but as the table scale up, application become slower and slower
This usually means that you're missing an index somewhere.
MyISAM is not good: in addition to being non ACID compliant, it'll lock the whole table to do an insert -- which kills concurrency.
Read the MySQL documentation carefully:
http://dev.mysql.com/doc/refman/5.0/en/insert-speed.html
Especially "innodb_flush_log_at_trx_commit" -
http://dev.mysql.com/doc/refman/5.0/en/innodb-parameters.html
I would stay away from MyISAM as it has concurrency issues when mixing SELECT and INSERT statements. If you can keep your insert tables small enough to stay in memory, they'll go much faster. Batching your updates in a transaction will help them go faster as well. Setting up a test environment and tuning for your actual job is important.
You may also want to look into partitioning to rotate your logs. You'd drop the old partition and create a new one for the current data. This is much faster than than deleting the old rows.

Dummies guide to locking in innodb

The typical documentation on locking in innodb is way too confusing. I think it will be of great value to have a "dummies guide to innodb locking"
I will start, and I will gather all responses as a wiki:
The column needs to be indexed before row level locking applies.
EXAMPLE: delete row where column1=10; will lock up the table unless column1 is indexed
Here are my notes from working with MySQL support on a recent, strange locking issue (version 5.1.37):
All rows and index entries traversed to get to the rows being changed will be locked. It's covered at:
http://dev.mysql.com/doc/refman/5.1/en/innodb-locks-set.html
"A locking read, an UPDATE, or a DELETE generally set record locks on every index record that is scanned in the processing of the SQL statement. It does not matter whether there are WHERE conditions in the statement that would exclude the row. InnoDB does not remember the exact WHERE condition, but only knows which index ranges were scanned. ... If you have no indexes suitable for your statement and MySQL must scan the entire table to process the statement, every row of the table becomes locked, which in turn blocks all inserts by other users to the table."
That is a MAJOR headache if true.
It is. A workaround that is often helpful is to do:
UPDATE whichevertable set whatever to something where primarykey in (select primarykey from whichevertable where constraints order by primarykey);
The inner select doesn't need to take locks and the update will then have less work to do for the updating. The order by clause ensures that the update is done in primary key order to match InnoDB's physical order, the fastest way to do it.
Where large numbers of rows are involved, as in your case, it can be better to store the select result in a temporary table with a flag column added. Then select from the temporary table where the flag is not set to get each batch. Run updates with a limit of say 1000 or 10000 and set the flag for the batch after the update. The limits will keep the amount of locking to a tolerable level while the select work will only have to be done once. Commit after each batch to release the locks.
You can also speed this work up by doing a select sum of an unindexed column before doing each batch of updates. This will load the data pages into the buffer pool without taking locks. Then the locking will last for a shorter timespan because there won't be any disk reads.
This isn't always practical but when it is it can be very helpful. If you can't do it in batches you can at least try the select first to preload the data, if it's small enough to fit into the buffer pool.
If possible use the READ COMMITTED transaction isolation mode. See:
http://dev.mysql.com/doc/refman/5.1/en/set-transaction.html
To get that reduced locking requires use of row-based binary logging (rather than the default statement based binary logging).
Two known issues:
Subqueries can be less than ideally optimised sometimes. In this case it was an undesirable dependent subquery - the suggestion I made to use a subquery turned out to be unhelpful compared to the alternative in this case because of that.
Deletes and updates do not have the same range of query plans as select statements so sometimes it's hard to properly optimise them without measuring the results to work out exactly what they are doing.
Both of these are gradually improving. This bug is one example where we've just improved the optimisations available for an update, though the changes are significant and it's still going through QA to be sure it doesn't have any great adverse effects:
http://bugs.mysql.com/bug.php?id=36569