Dynamically-generated SVG not resizing with container [duplicate] - html

I am learning svg from its official documents, there is such line. I don't get it, if it already has a width and height attribute, what is the point to specify it again in viewBox="0 0 1500 1000" ?
It is says, "One px unit is defined to be equal to one user unit. Thus, a length of "5px" is the same as a length of "5"" in the official docs, thus this viewBox is a 1500px wide and 1000 height view, which exceeds 300px and 200px. So why does it define the width and height value in the first place?
<svg width="300px" height="200px" version="1.1"
viewBox="0 0 1500 1000" preserveAspectRatio="none"
xmlns="http://www.w3.org/2000/svg">

The width and height are how big the <svg> is. The viewBox controls how its contents are displayed so the viewBox="0 0 1500 1000" will scale down the contents of <svg> element by a factor of 5 (1500 / 300 = 5 and 1000 / 200 = 5) and the contents will be 1/5 the size they would be without the viewBox but the <svg>
Imagine you have an elastic surface and cut it into 4 equal pieces. If you throw 3 pieces away you've got a surface that's 1/4 the size of the original surface. If you now stretch the surface and make it the same size as the original surface then everything on the surface will be twice the size. That's how viewBox and width/height are related.

If you don't specify a viewbox, all unitless numbers in an element are assumed to be pixels. (and SVG assumes 90 dpi or pixels per inch for conversion from units like cm to pixels.)
A viewbox lets you make unitless numbers in elements mean "user units" and specifies how those units are mapped to the size. For simplicity, consider just the x coordinates, that is, a ruler. Your viewbox says that your ruler will have 1500 units to match the 200 pixel size width of the svg.
A line element from 0 to 1500 (unitless, i.e. user units) would stretch 200 pixels as drawn, that is, across the width of the svg drawing.
(And since SVG is scalable without loss of resolution, pixels really don't mean much in the real world, when a user zooms in or out.)
Its a coordinate transformation, of sorts.
I suggest you learn from a book like "SVG Essentials", about $10 used, from which I loosely quote this answer.

By default
<svg width="300" height="200">
the "ruler" of svg grid is in pixel (all shapes in that svg is measured in pixel)
But you want to use your own units you can use viewBox attr for that:
<svg width="300" height="200" viewBox="0 0 1500 1000">
That means:
horizontal axis: 1500 (your width unit) = 300px => 1 (your width unit) = 300/1500px = 1/5px
vertical axis: 1000 (your height unit) = 200px => 1 (your height unit) = 200/1000px = 1/5px
Now all shapes in the svg will scale:
their widths scale to 1/5px (1/5 < 1 => scale down) comparing to the origin.
their heights also scale to 1/5px (1/5 < 1 => scale down) comparing to the origin

MAIN:
The viewBox attribute is closely related to the term viewport in SVG
ABBREVIATION:
viewBox - VB
viewport - VP
viewport coordinate system - VCS
local coordinate system - LCS
SYNTAX:
<svg x = "VP_min_X" y = "VP_min_Y" width = "VP_width" height = "VP_height"
viewBox = "VB_min_X VB_min_Y VB_width VB_height">
DEFAULT VALUES:
units = px
viewport width = 300
viewport width = 150
viewBox = viewport
CODE WITH DEFAULT VALUES
<svg>
CODE WITH THE SAME RESULT:
<svg x = "0" y = "0" width = "300" height = "150" viewBox = "0 0 300 150">
VIEWPORT SETTINGS:
THE ORIGIN POINT of the viewport coordinate system (VCS):
VP_min_X
VP_min_Y
in the case of the outermost viewport, these values do not matter
and in any case will be equal to 0, they are usually omitted:
<svg width = "100" height = "150">
CODE WITH THE SAME RESULT: (for the most external viewport):
<svg x = "10" y = 20 "width ="100 "height ="150">
NESTED VIEWPORT:
In a nested viewport (VP_min_X, VP_min_Y) define the indent from the origin point of VCS:
<svg width="100%" height="100%"> <!-- external viewport = full browser size -->
<svg x="50" y="100" width="200" height="300" viewBox="0 0 100 100">
</svg>
</svg>
in this case indent of the nested viewport:
50px along the X axis and 100px along the Y axis from the origin point of the external VCS.
THE DIMENSIONS of the rectangular area (viewport) in which SVG grafics will be drawn are determined:
VP_width
VP_height
VIEWBOX SETTINGS:
THE ORIGIN POINT of the local coordinate system (LCS):
Vb_min_X
Vb_min_y
THE SIZE of the visible part of the SVG image:
Vb_width
Vb_height
RENDERING:
When constructing the final SVG image, the coordinate systems are transformed by COMBINING:
Points of origin of coordinate systems:
VCS (VP_min_X, VP_min_Y)
LCS (VB_min_X, VB_min_Y)
End points of the visible image area:
VCS (VP_width, VP_height)
LCS (VB_width, VB_height)
CAPABILITIES:
As a result, it becomes possible to control:
location of the viewport in the browser window [using the nested viewport and changing (VP_min_X, VP_min_Y)]
viewport sizes (VP_width, VP_height)
panning the visible part of the image [using viewBox and changing (VB_min_X, VB_min_Y)]
scaling the visible part of the image [using viewBox and changing (VB_width, VB_height)]
VISUALIZATION:
2 minutes on YouTube to understand the principles described above:
video viewBox in SVG
DOCUMENTATION:
W3C 2019 SVG 2 specification

Here is some practical information that I find useful to understand (and particularly to work with) SVG viewPort and viewBox.
SVG uses the terms viewPort and viewBox. The viewBox is inside the viewPort. Think of the viewBox as the image itself – because you can zoom it, slide it left/right/up/down – all within the viewPort. The viewPort (the SVG tag itself) is like a container that the SVG image is inside. You can size this also, and move it around left/right/up/down. And the SVG tag is within an HTML container (div, p, aside, h3, etc). So you can see why people find viewPort / viewBox to be a bit confusing. Just think of viewBox as the image itself.
The width/height attributes on the SVG tag provide the size of the viewPort. This is the width/height of the container in which the SVG image is displayed. (You can also have x="" and y="" attributes, just as you have in the viewBox attribute.)
So, on the SVG itself, you specify width /height and starting x offset / starting y offset – these are called the viewPort (aka ViewPort Coord System)
In the viewBox attribute, you specify "x y width height" – these are called the viewBox (aka Local Coord System LCS)
<svg x="0" y="0" width="500" height="300"
viewBox="start_x start_y width height" >
...path fill d etc...
</svg>
Important Concept #1: the width/height of the viewPort (the ones that are on the SVG tag itself, as width="" and height="") specify the size of the container in which the SVG image will be displayed. Usually, or if omitted, this is the exact size as (or a tiny bit larger than) the SVG image itself.
Super-Important Concept #2: the width/height of the viewBox is directly related to the width/height of the viewPort. If the viewPort is 300 x 500, then as the viewBox W / H numbers get LARGER than 300 x 500, the image itself grows smaller within the viewPort (zooms out). But as the viewBox w/h gets smaller than 300 x 500, the image itself grows LARGER within the viewPort. This growth is to the right and down, so if you need to slide the zoomed-in image around in the now-too-small viewPort, that is when you use the X / Y values of the viewBox.
viewBox x/y – slides the SVG right/down inside the viewPort
viewBox width/height – as increase larger than the SVG tag's width/height, it zooms the image OUT inside the viewPort. The SVG shrinks right/down within the viewport. Decrease number below the SVG width/height attribs: the image will GROW in the viewport until portions of the image to the right/bottom may be cut off by the rightSide/Bottom of the viewPort. *(i.e. when the width/height numbers in the viewBox attribute are less than the width/height attributes on the SVG, the image ZOOMS IN within the viewPort. When larger, the image zooms OUT (shrinks) with the viewPort.
viewPort x/y == slides the viewport itself right/down within its HTML container
viewPort width/height – resizes the entire viewPort larger, possibly overflowing the HTML container (div / p / etc). Basically, makes the viewPort larger by growing it right/down.
Notes:
a. If you do not include the ViewBox attribute on the SVG, then the size of the viewBox equals the size of the viewPort (takes 100% of the viewPort)
b. If the viewBox begins 0,0 and has same width/height as the SVG width/height (i.e. the viewPort), nothing will change. Equivalent to not having a viewbox attribute at all.
c. If you have a viewPort the size of a deck of cards, but the SVG image is the size of a cereal box, then increasing the viewBox "x y …" numbers will move the cereal box image up/left in the viewPort, showing a different part of the cereal box's image. This would be useful with sprites
d. (Usually (always!) the SVG element is also inside an HTML container - a div, p, section, li, whatever. We didn't discuss this, but remember it. If your image is being cut off, then either the viewBox is larger than the viewPort -OR- the HTML container element (div, etc) is smaller than the viewPort)
Here are two (excellent!) short videos, referred to us by the author of this answer within this same thread:
2min video demo
5min video demo (same guy, much better)

Here's a non-technical way of illustrating the relationship between width, height and the viewBox:
If you had any old image on your computer with the dimensions 1500 x 1000, and you pinched the corner of the image and resized it to 300 x 200, the image would shrink, or scale down (assuming scaling is enabled). The opposite is also true.
A good rule of thumb is to always look at the viewBox width and height first, and compare it to the SVG's width and height (or the parent's width and height if they are not declared in the SVG). That way you can tell whether the SVG image will scale up (grow), or down (shrink).
<svg width="300px" height="200px" viewBox="0 0 1500 1000">
The above is telling the browser that you have an SVG that's 1500 x 1000 but you want it to "pinch the corners" and shrink it down to 300 x 200.

viewbox is a ratio
In my humble experience, I've always considered <svg>’s viewbox values as a required image ratio to apply to the width and height values. While defining the laters just I do with any <img> in the DOM, either inline HTML properties or via CSS, viewbox property only applies to the SVG file.

Related

Svg renders at a different pixel count than specified

I am trying to get exact pixel counts on an svg, but it seems off. I want it to be 300x56, but for some reason its rendering as 222x41
This is the code
But it seems like the pixels are inconsistent when I inspect:It says 222x41 here
but 300x56 here
How is 222x41 calculated, and why does chrome debugger show both 300x56 and 222x41?
Explaining what you are seeing would require seeing more of the page. We would need to see how the element containing the <svg> is styled.
But here's a quick explainer.
The area of your page that the SVG is displayed in is called the "viewport". The size of the viewport is determined by one of two things:
The width and height of the SVG if they use explicit units - such as px, or
The size of the SVGs parent container if the SVG specifies percentage units.
Your SVG has a viewBox this determines which area of the SVG canvas is displayed in the viewport. The browser will scale the area of the viewBox up of down so it fits in the viewport. Unless you turn it off, the contents will keep its aspect ratio
So since your SVG has a viewBox and its width and height are set to "100%", the SVG viewport will be scaled to fit into the parent container and the SVG contents will be scaled to fit into that viewport.
You said you were trying to make the SVG be 300x56, but it looks like all you did to try and achieve that is set the <rect> to that size. That is not enough because of the reasons stated above. The effect of the viewport and the viewBox will be affecting the size that the rectangle is drawn at.
The viewBox of your SVG is 1500x280. Your rectangle is occupying a small part of that - from (10,10) to (310,66). Since your rectangle is being scaled down to 222.93x41.61, the SVG's parent container must be smaller than the viewBox. We can work out how big it must be:
1500 * (222.93/300) ~= 1115 (if the width is constrained) or
280 * ( 41.61/ 56) ~= 208 (if the height is constrained).
If you want your SVG to be exactly 300x56 always, then what you probably want is to set the SVG's width and height, not the rectangle's.
<svg width="300" height="56">
<rect width="300" height="56" rx="4"/>
</svg>
Now the SVG will behave the same as if it was a 300x56 pixel PNG.

SVG viewbox always relative to it's size?

A pretty simple example if I have this square SVG:
<svg class="svg-correct-symbol" viewBox="0 0 442.533 442.533"
width="50px" height="50px">
And I change it to:
<svg class="svg-correct-symbol" viewBox="0 0 200 200"
width="50px" height="50px">
I will see about a quarter of the image right? Because the width and height is halved of the window(viewbox) you are 'looking through' to view the SVG.
So the viewbox's number: 442.533 will always mean 100% of the images width/height.
How it this default viewbox number set? Is this viewbox size determined by how large the file is when you export it? I would like to have a viewBox of something more rounded like viewBox="0 0 16 16".
With an already exported image I don't see a way to change it though.
There is no default viewBox number. It is defined at the time the svg image is created (manually or by using software, like illustrator). It has 4 co-ordinates x y width height. What makes it tricky is that these coordinates have nothing to do with the image dimension and, like you mentioned, it only defines the area you are "looking through".
You can set the viewbox to any values you want. But you will also need to scale the svg image accordingly to fit your new viewbox. Similarly, you might also need to translate / shift the images in the x , y axis to bring it to centre or to fit the frame / viewbox.
Check out svg transform from the documentation.
This tutorial might also be useful to understand svg transforms.
And in case you are using a software like illustrator, all you need to do is set the dimension of the artboard which defines the viewbox and then scale accordingly.

Why is SVG scaling inversely with the viewBox, ie. larger numbers make SVG smaller and smaller numbers make it larger [duplicate]

I am learning svg from its official documents, there is such line. I don't get it, if it already has a width and height attribute, what is the point to specify it again in viewBox="0 0 1500 1000" ?
It is says, "One px unit is defined to be equal to one user unit. Thus, a length of "5px" is the same as a length of "5"" in the official docs, thus this viewBox is a 1500px wide and 1000 height view, which exceeds 300px and 200px. So why does it define the width and height value in the first place?
<svg width="300px" height="200px" version="1.1"
viewBox="0 0 1500 1000" preserveAspectRatio="none"
xmlns="http://www.w3.org/2000/svg">
The width and height are how big the <svg> is. The viewBox controls how its contents are displayed so the viewBox="0 0 1500 1000" will scale down the contents of <svg> element by a factor of 5 (1500 / 300 = 5 and 1000 / 200 = 5) and the contents will be 1/5 the size they would be without the viewBox but the <svg>
Imagine you have an elastic surface and cut it into 4 equal pieces. If you throw 3 pieces away you've got a surface that's 1/4 the size of the original surface. If you now stretch the surface and make it the same size as the original surface then everything on the surface will be twice the size. That's how viewBox and width/height are related.
By default
<svg width="300" height="200">
the "ruler" of svg grid is in pixel (all shapes in that svg is measured in pixel)
But you want to use your own units you can use viewBox attr for that:
<svg width="300" height="200" viewBox="0 0 1500 1000">
That means:
horizontal axis: 1500 (your width unit) = 300px => 1 (your width unit) = 300/1500px = 1/5px
vertical axis: 1000 (your height unit) = 200px => 1 (your height unit) = 200/1000px = 1/5px
Now all shapes in the svg will scale:
their widths scale to 1/5px (1/5 < 1 => scale down) comparing to the origin.
their heights also scale to 1/5px (1/5 < 1 => scale down) comparing to the origin
If you don't specify a viewbox, all unitless numbers in an element are assumed to be pixels. (and SVG assumes 90 dpi or pixels per inch for conversion from units like cm to pixels.)
A viewbox lets you make unitless numbers in elements mean "user units" and specifies how those units are mapped to the size. For simplicity, consider just the x coordinates, that is, a ruler. Your viewbox says that your ruler will have 1500 units to match the 200 pixel size width of the svg.
A line element from 0 to 1500 (unitless, i.e. user units) would stretch 200 pixels as drawn, that is, across the width of the svg drawing.
(And since SVG is scalable without loss of resolution, pixels really don't mean much in the real world, when a user zooms in or out.)
Its a coordinate transformation, of sorts.
I suggest you learn from a book like "SVG Essentials", about $10 used, from which I loosely quote this answer.
MAIN:
The viewBox attribute is closely related to the term viewport in SVG
ABBREVIATION:
viewBox - VB
viewport - VP
viewport coordinate system - VCS
local coordinate system - LCS
SYNTAX:
<svg x = "VP_min_X" y = "VP_min_Y" width = "VP_width" height = "VP_height"
viewBox = "VB_min_X VB_min_Y VB_width VB_height">
DEFAULT VALUES:
units = px
viewport width = 300
viewport width = 150
viewBox = viewport
CODE WITH DEFAULT VALUES
<svg>
CODE WITH THE SAME RESULT:
<svg x = "0" y = "0" width = "300" height = "150" viewBox = "0 0 300 150">
VIEWPORT SETTINGS:
THE ORIGIN POINT of the viewport coordinate system (VCS):
VP_min_X
VP_min_Y
in the case of the outermost viewport, these values do not matter
and in any case will be equal to 0, they are usually omitted:
<svg width = "100" height = "150">
CODE WITH THE SAME RESULT: (for the most external viewport):
<svg x = "10" y = 20 "width ="100 "height ="150">
NESTED VIEWPORT:
In a nested viewport (VP_min_X, VP_min_Y) define the indent from the origin point of VCS:
<svg width="100%" height="100%"> <!-- external viewport = full browser size -->
<svg x="50" y="100" width="200" height="300" viewBox="0 0 100 100">
</svg>
</svg>
in this case indent of the nested viewport:
50px along the X axis and 100px along the Y axis from the origin point of the external VCS.
THE DIMENSIONS of the rectangular area (viewport) in which SVG grafics will be drawn are determined:
VP_width
VP_height
VIEWBOX SETTINGS:
THE ORIGIN POINT of the local coordinate system (LCS):
Vb_min_X
Vb_min_y
THE SIZE of the visible part of the SVG image:
Vb_width
Vb_height
RENDERING:
When constructing the final SVG image, the coordinate systems are transformed by COMBINING:
Points of origin of coordinate systems:
VCS (VP_min_X, VP_min_Y)
LCS (VB_min_X, VB_min_Y)
End points of the visible image area:
VCS (VP_width, VP_height)
LCS (VB_width, VB_height)
CAPABILITIES:
As a result, it becomes possible to control:
location of the viewport in the browser window [using the nested viewport and changing (VP_min_X, VP_min_Y)]
viewport sizes (VP_width, VP_height)
panning the visible part of the image [using viewBox and changing (VB_min_X, VB_min_Y)]
scaling the visible part of the image [using viewBox and changing (VB_width, VB_height)]
VISUALIZATION:
2 minutes on YouTube to understand the principles described above:
video viewBox in SVG
DOCUMENTATION:
W3C 2019 SVG 2 specification
Here is some practical information that I find useful to understand (and particularly to work with) SVG viewPort and viewBox.
SVG uses the terms viewPort and viewBox. The viewBox is inside the viewPort. Think of the viewBox as the image itself – because you can zoom it, slide it left/right/up/down – all within the viewPort. The viewPort (the SVG tag itself) is like a container that the SVG image is inside. You can size this also, and move it around left/right/up/down. And the SVG tag is within an HTML container (div, p, aside, h3, etc). So you can see why people find viewPort / viewBox to be a bit confusing. Just think of viewBox as the image itself.
The width/height attributes on the SVG tag provide the size of the viewPort. This is the width/height of the container in which the SVG image is displayed. (You can also have x="" and y="" attributes, just as you have in the viewBox attribute.)
So, on the SVG itself, you specify width /height and starting x offset / starting y offset – these are called the viewPort (aka ViewPort Coord System)
In the viewBox attribute, you specify "x y width height" – these are called the viewBox (aka Local Coord System LCS)
<svg x="0" y="0" width="500" height="300"
viewBox="start_x start_y width height" >
...path fill d etc...
</svg>
Important Concept #1: the width/height of the viewPort (the ones that are on the SVG tag itself, as width="" and height="") specify the size of the container in which the SVG image will be displayed. Usually, or if omitted, this is the exact size as (or a tiny bit larger than) the SVG image itself.
Super-Important Concept #2: the width/height of the viewBox is directly related to the width/height of the viewPort. If the viewPort is 300 x 500, then as the viewBox W / H numbers get LARGER than 300 x 500, the image itself grows smaller within the viewPort (zooms out). But as the viewBox w/h gets smaller than 300 x 500, the image itself grows LARGER within the viewPort. This growth is to the right and down, so if you need to slide the zoomed-in image around in the now-too-small viewPort, that is when you use the X / Y values of the viewBox.
viewBox x/y – slides the SVG right/down inside the viewPort
viewBox width/height – as increase larger than the SVG tag's width/height, it zooms the image OUT inside the viewPort. The SVG shrinks right/down within the viewport. Decrease number below the SVG width/height attribs: the image will GROW in the viewport until portions of the image to the right/bottom may be cut off by the rightSide/Bottom of the viewPort. *(i.e. when the width/height numbers in the viewBox attribute are less than the width/height attributes on the SVG, the image ZOOMS IN within the viewPort. When larger, the image zooms OUT (shrinks) with the viewPort.
viewPort x/y == slides the viewport itself right/down within its HTML container
viewPort width/height – resizes the entire viewPort larger, possibly overflowing the HTML container (div / p / etc). Basically, makes the viewPort larger by growing it right/down.
Notes:
a. If you do not include the ViewBox attribute on the SVG, then the size of the viewBox equals the size of the viewPort (takes 100% of the viewPort)
b. If the viewBox begins 0,0 and has same width/height as the SVG width/height (i.e. the viewPort), nothing will change. Equivalent to not having a viewbox attribute at all.
c. If you have a viewPort the size of a deck of cards, but the SVG image is the size of a cereal box, then increasing the viewBox "x y …" numbers will move the cereal box image up/left in the viewPort, showing a different part of the cereal box's image. This would be useful with sprites
d. (Usually (always!) the SVG element is also inside an HTML container - a div, p, section, li, whatever. We didn't discuss this, but remember it. If your image is being cut off, then either the viewBox is larger than the viewPort -OR- the HTML container element (div, etc) is smaller than the viewPort)
Here are two (excellent!) short videos, referred to us by the author of this answer within this same thread:
2min video demo
5min video demo (same guy, much better)
Here's a non-technical way of illustrating the relationship between width, height and the viewBox:
If you had any old image on your computer with the dimensions 1500 x 1000, and you pinched the corner of the image and resized it to 300 x 200, the image would shrink, or scale down (assuming scaling is enabled). The opposite is also true.
A good rule of thumb is to always look at the viewBox width and height first, and compare it to the SVG's width and height (or the parent's width and height if they are not declared in the SVG). That way you can tell whether the SVG image will scale up (grow), or down (shrink).
<svg width="300px" height="200px" viewBox="0 0 1500 1000">
The above is telling the browser that you have an SVG that's 1500 x 1000 but you want it to "pinch the corners" and shrink it down to 300 x 200.
viewbox is a ratio
In my humble experience, I've always considered <svg>’s viewbox values as a required image ratio to apply to the width and height values. While defining the laters just I do with any <img> in the DOM, either inline HTML properties or via CSS, viewbox property only applies to the SVG file.

How to let this SVG graphic fit to its container automatically?

http://jsfiddle.net/K5RYY/
I have a SVG star in the demo. It's inside a div with a given width and height. How can I make the graphics automatically fit the size of that wrapper div? I think it's possible because it's a vector graphic.
Thanks,
If you add a viewBox="0 0 230 230" to your SVG it will redimension according to your DIV.
See an updated JSFiddle
Add viewBox="15 15 200 190" preserveAspectRatio="none" to the svg element. viewBox contains x y width and height values and defines the area you can see.
If you want the star to keep its aspect ratio at the expense of some space at the edges in one dimension then you can adjust the preserveAspectRatio value.

Scale hardcoded SVG image based on div size upon page load

I have a div element which contains a svg graph (bunch of circles and edges), and I also set viewBox attribute on the svg element. The coordinates of the nodes and edges in the graph are hardcoded for a specified screen size (hence for a specified div size too) in px. With the desired div size, the graph loads nicely, and also scales up and down while the browser window is being resized.
However, my problem arises whenever the page is loaded under a different screen/div size, as the svg image remains the same for the specified div size before. This creates an image that is too large for smaller browser/screen sizes.
I set the following for the svg element:
<svg id="mygraph" preserveAspectRatio="xMidYMid meet">
and set its viewBox attribute using Javascript, immediately after the div element:
<script type="text/javascript">
document.getElementById("mygraph").setAttribute("viewBox", "0 0 " + $("#graphdiv").width() + " " + $("#graphdiv").height());
</script>
This does not resolve the problem. So what else can I try?
The viewBox defines the coordinate system used inside the svg, it doesn't change the size of the svg. If you have a viewBox you only need to set the width and height of the svg (using CSS for example) and it will render to that size.