In Order to explain it simply: I have 53 Oil Producing wells measurements, each well has been measured each day for 6 years, we recorded multiple variables (Pressure, water production, gas production...etc), and our main component(The one we want to study and forecast) is the Oil production rate. How can I Use all the data to train my model of LSTM/GRU knowing that the Oil wells are independent and that the measurments have been done in the same time for each one?
The knowledge that "the measurments have been done in the same time for each [well]" is not necessary if you want to assume that the wells are independent. (Why do you think that that knowledge is useful?)
So if the wells are considered independent, treat them as individual samples. Split them into a training set, validation set, and test set, as usual. Train a usual LSTM or GRU on the training set.
By the way, you might want to use the attention mechanism instead of recurrent networks. It is easier to train and usually yields comparable results.
Even convolutional networks might be good enough. See methods like WaveNet if you suspect long-range correlations.
These well measurements sound like specific and independent events. I work in the finance sector. We always look at different stocks, and each stocks specific time neries using LSTM, but not 10 stocks mashed up together. Here's some code to analyze a specific stock. Modify the code to suit your needs.
from pandas_datareader import data as wb
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pylab import rcParams
from sklearn.preprocessing import MinMaxScaler
start = '2019-06-30'
end = '2020-06-30'
tickers = ['GOOG']
thelen = len(tickers)
price_data = []
for ticker in tickers:
prices = wb.DataReader(ticker, start = start, end = end, data_source='yahoo')[['Open','Adj Close']]
price_data.append(prices.assign(ticker=ticker)[['ticker', 'Open', 'Adj Close']])
#names = np.reshape(price_data, (len(price_data), 1))
df = pd.concat(price_data)
df.reset_index(inplace=True)
for col in df.columns:
print(col)
#used for setting the output figure size
rcParams['figure.figsize'] = 20,10
#to normalize the given input data
scaler = MinMaxScaler(feature_range=(0, 1))
#to read input data set (place the file name inside ' ') as shown below
df['Adj Close'].plot()
plt.legend(loc=2)
plt.xlabel('Date')
plt.ylabel('Price')
plt.show()
ntrain = 80
df_train = df.head(int(len(df)*(ntrain/100)))
ntest = -80
df_test = df.tail(int(len(df)*(ntest/100)))
#importing the packages
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM
#dataframe creation
seriesdata = df.sort_index(ascending=True, axis=0)
new_seriesdata = pd.DataFrame(index=range(0,len(df)),columns=['Date','Adj Close'])
length_of_data=len(seriesdata)
for i in range(0,length_of_data):
new_seriesdata['Date'][i] = seriesdata['Date'][i]
new_seriesdata['Adj Close'][i] = seriesdata['Adj Close'][i]
#setting the index again
new_seriesdata.index = new_seriesdata.Date
new_seriesdata.drop('Date', axis=1, inplace=True)
#creating train and test sets this comprises the entire data’s present in the dataset
myseriesdataset = new_seriesdata.values
totrain = myseriesdataset[0:255,:]
tovalid = myseriesdataset[255:,:]
#converting dataset into x_train and y_train
scalerdata = MinMaxScaler(feature_range=(0, 1))
scale_data = scalerdata.fit_transform(myseriesdataset)
x_totrain, y_totrain = [], []
length_of_totrain=len(totrain)
for i in range(60,length_of_totrain):
x_totrain.append(scale_data[i-60:i,0])
y_totrain.append(scale_data[i,0])
x_totrain, y_totrain = np.array(x_totrain), np.array(y_totrain)
x_totrain = np.reshape(x_totrain, (x_totrain.shape[0],x_totrain.shape[1],1))
#LSTM neural network
lstm_model = Sequential()
lstm_model.add(LSTM(units=50, return_sequences=True, input_shape=(x_totrain.shape[1],1)))
lstm_model.add(LSTM(units=50))
lstm_model.add(Dense(1))
lstm_model.compile(loss='mean_squared_error', optimizer='adadelta')
lstm_model.fit(x_totrain, y_totrain, epochs=10, batch_size=1, verbose=2)
#predicting next data stock price
myinputs = new_seriesdata[len(new_seriesdata) - (len(tovalid)+1) - 60:].values
myinputs = myinputs.reshape(-1,1)
myinputs = scalerdata.transform(myinputs)
tostore_test_result = []
for i in range(60,myinputs.shape[0]):
tostore_test_result.append(myinputs[i-60:i,0])
tostore_test_result = np.array(tostore_test_result)
tostore_test_result = np.reshape(tostore_test_result,(tostore_test_result.shape[0],tostore_test_result.shape[1],1))
myclosing_priceresult = lstm_model.predict(tostore_test_result)
myclosing_priceresult = scalerdata.inverse_transform(myclosing_priceresult)
totrain = df_train
tovalid = df_test
#predicting next data stock price
myinputs = new_seriesdata[len(new_seriesdata) - (len(tovalid)+1) - 60:].values
# Printing the next day’s predicted stock price.
print(len(tostore_test_result));
print(myclosing_priceresult);
Final result:
1
[[1396.532]]
Related
I am new to deep learning, trying to implement a neural network using 4-fold cross-validation for training, testing, and validating. The topic is to classify the vehicle using an existing dataset.
The accuracy result is 0.7.
Traning Accuracy
An example output for epochs
I also don't know whether the code is correct and what to do for increasing the accuracy.
Here is the code:
!pip install category_encoders
import tensorflow as tf
from sklearn.model_selection import KFold
import pandas as pd
import numpy as np
from tensorflow import keras
import category_encoders as ce
from category_encoders import OrdinalEncoder
car_data = pd.read_csv('car_data.csv')
car_data.columns = ['Purchasing', 'Maintenance', 'No_Doors','Capacity','BootSize','Safety','Evaluation']
# Extract the features and labels from the dataset
X = car_data.drop(['Evaluation'], axis=1)
Y = car_data['Evaluation']
encoder = ce.OrdinalEncoder(cols=['Purchasing', 'Maintenance', 'No_Doors','Capacity','BootSize','Safety'])
X = encoder.fit_transform(X)
X = X.to_numpy()
Y_df = pd.DataFrame(Y, columns=['Evaluation'])
encoder = OrdinalEncoder(cols=['Evaluation'])
Y_encoded = encoder.fit_transform(Y_df)
Y = Y_encoded.to_numpy()
input_layer = tf.keras.layers.Input(shape=(X.shape[1]))
# Define the hidden layers
hidden_layer_1 = tf.keras.layers.Dense(units=64, activation='relu', kernel_initializer='glorot_uniform')(input_layer)
hidden_layer_2 = tf.keras.layers.Dense(units=32, activation='relu', kernel_initializer='glorot_uniform')(hidden_layer_1)
# Define the output layer
output_layer = tf.keras.layers.Dense(units=1, activation='sigmoid', kernel_initializer='glorot_uniform')(hidden_layer_2)
# Create the model
model = tf.keras.Model(inputs=input_layer, outputs=output_layer)
# Initialize the 4-fold cross-validation
kfold = KFold(n_splits=4, shuffle=True, random_state=42)
# Initialize a list to store the scores
scores = []
quality_weights= []
# Compile the model
model.compile(optimizer='adam',
loss=''sparse_categorical_crossentropy'',
metrics=['accuracy'],
sample_weight_mode='temporal')
for train_index, test_index in kfold.split(X,Y):
# Split the data into train and test sets
X_train, X_test = X[train_index], X[test_index]
Y_train, Y_test = Y[train_index], Y[test_index]
# Fit the model on the training data
model.fit(X_train, Y_train, epochs=300, batch_size=64, sample_weight=quality_weights)
# Evaluate the model on the test data
score = model.evaluate(X_test, Y_test)
# Append the score to the scores list
scores.append(score[1])
plt.plot(history.history['accuracy'])
plt.title('Model Training Accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train'], loc='upper left')
plt.show()
# Print the mean and standard deviation of the scores
print(f'Mean accuracy: {np.mean(scores):.3f} +/- {np.std(scores):.3f}')
The first thing that caught my attention was here:
model.fit(X_train, Y_train, epochs=300, batch_size=64, sample_weight=quality_weights)
Your quality_weights should be a numpy array of size of the input.
Refer here: https://keras.io/api/models/model_training_apis/#fit-method
If changing that doesn't seemt to help then may be your network doesn't seem to be learning from the data. A few possible reasons could be:
The network is a bit too shallow. Try adding just one more hidden layer to see if that improves anything
From the code I can't see the size of your input data. Does it have enough datapoints for 4-fold cross-validation? Can you somehow augment the data?
import pandas as pd
import numpy as np
import keras
import tensorflow
from keras.models import Model
from keras.layers import Dense
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing import image
trdata = ImageDataGenerator()
traindata = trdata.flow_from_directory(directory="path",target_size=(224,224))
tsdata = ImageDataGenerator()
testdata = tsdata.flow_from_directory(directory="path", target_size=(224,224))
from keras.applications.vgg16 import VGG16
vggmodel = VGG16(weights='imagenet', include_top=True)
vggmodel.summary()
for layers in (vggmodel.layers)[:19]:
print(layers)
layers.trainable = False
#flatten_out = tensorflow.keras.layers.Flatten()(vggmodel.output)
#fc1 = tensorflow.keras.layers.Dense(units=4096,activation="relu")(flatten_out)
#fc2 = tensorflow.keras.layers.Dense(units=4096,activation="relu")(fc1)
#fc3 = tensorflow.keras.layers.Dense(units=256,activation="relu")(fc2)
#predictions = tensorflow.keras.layers.Dense(units=3, activation="softmax")(fc3)
X= vggmodel.layers[-2].output
predictions = Dense(units=3, activation="softmax")(X)
model_final = Model(vggmodel.input, predictions)
model_final.compile(loss = "categorical_crossentropy", optimizer = optimizers.SGD(lr=0.001, momentum=0.9), metrics=["accuracy"])
model_final.summary()
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, TensorBoard, EarlyStopping
checkpoint = ModelCheckpoint("vgg16_1.h5", monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)
early = EarlyStopping(monitor='val_acc', min_delta=0, patience=40, verbose=1, mode='auto')
model_final.fit_generator(generator= traindata, steps_per_epoch= 95, epochs= 100, validation_data= testdata, validation_steps=7, callbacks=[checkpoint,early])
i am classifying emotion in positive, negative and neutral.
i a, using Vgg16 transfer learning model.
though i m still not getting better validation accuracy.
things i've tried:
increase the number of training data
layers.trainable=False/True
learning rate:0.0001,0.001,0.01
Activation function= relu/softmax
batch size= 64
optimizers= adam/sgd
loss fn= categoricalcrossentrpy / sparsecategoricalcrossentrpy
momentum =0.09 /0.9
also, i tried to change my dataset color to GRAY and somehow it gave better accuracy than previous COLOR IMAGE but it is still not satisfactory.
i also changed my code and add dropout layers but still no progress.
i tried with FER2013 dataset it was giving me pretty decent accuracy.
these are the results on the FER dataset:
accuracy: 0.9997 - val_accuracy: 0.7105
but on my own dataset(which is pretty good) validation accuracy is not increasing more than 66%.
what else can I do to increase val_accuracy?
I think your model is more complex than necessary. I would remove the fc1 and fc2 layers. I would include regularization in the fc3 layer. I would add a dropout layer after the fc3 . In your early stopping callback change patience to 4. I recommend you use the Keras callback Reduce Learning rate on plateau. Full recommendations are in the code below
#flatten_out = tensorflow.keras.layers.Flatten()(vggmodel.output)
#fc3 = tensorflow.keras.layers.Dense(kernel_regularizer = regularizers.l2(l = 0.016),activity_regularizer=regularizers.l1(0.006),
bias_regularizer=regularizers.l1(0.006) ,activation='relu'))(flatten_out)
x=Dropout(rate=.4, seed=123)
#predictions = tensorflow.keras.layers.Dense(units=3, activation="softmax")(x)
rlronp=tf.keras.callbacks.ReduceLROnPlateau( monitor='val_loss',
factor=0.4,patience=2,
verbose=0, mode='auto')
callbacks=[rlronp, checkpoint, early]
X= vggmodel.layers[-2].output
predictions = Dense(units=3, activation="softmax")(X)
model_final.fit_generator(generator= traindata, steps_per_epoch= 95, epochs= 100, validation_data= testdata, validation_steps=7, callbacks=callbacks)
I do not like VGG it is a very large model and is a bit old and slow. I think you will get better and faster result using EfficientNet models, EfficientNetB3 should work fine.
If you want to try that get rid of all code for VGG and use
lr=.001
img_size=(256,256)
base_model=tf.keras.applications.efficientnet.EfficientNetB3(include_top=False,
weights="imagenet",input_shape=img_shape, pooling='max')
base_model.trainable=True
x=base_model.output
x=BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001 )(x)
x = Dense(256, kernel_regularizer = regularizers.l2(l =
0.016),activity_regularizer=regularizers.l1(0.006),
bias_regularizer=regularizers.l1(0.006) ,activation='relu')(x)
x=Dropout(rate=.4, seed=123)(x)
output=Dense(class_count, activation='softmax')(x)
model=Model(inputs=base_model.input, outputs=output)
model.compile(Adamax(learning_rate=lr), loss='categorical_crossentropy', metrics=
['accuracy'])
NOTE: EfficientNet models expect pixels in the range 0 to 255 so don't scale the pixels. Also note I make the base model trainable. They tell you NOT to do that but in many experiments I find training the base model from the outset leads to faster convergence and net lower validation loss.
I got a dataset with 6 datapoints +4 datapoints as labels, they asked to predict those 4 timesteps using the 6 datasteps.
can you please advise me what model and how should I use it , I though about some kind of RNN since there is time for each point.
Thanks!
These sort of problems where the predictions depend on the previous inputs are generally uses RNN networks(rnn, gru and lstm) as they retain the previous state information.
for deeper understanding:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
Please go through the comments as well I have written in the code.
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
from tensorflow.keras import Model
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import RNN, LSTM
"""
creating a toy dataset
lets use this below ```input_sequence``` as the sequence to make data points.
as per the question, we will use 6 points to predict next 4 points
"""
input_sequence = [1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10]
X_train = []
y_train = []
#first 6 points will be our input data points and next 4 points will be data label.
# so on we will shift by 1 and make such data points and label pairs
for i in range(len(input_sequence)-9):
X_train.append(input_sequence[i:i+6])
y_train.append(input_sequence[i+6:i+10])
X_train = np.array(X_train, dtype=np.float32)
y_train = np.array(y_train, dtype=np.int32)))
#X_test for the predictions (contains 6 points)
X_test = np.array([[8,9,10,1,2,3]],dtype=np.float32)
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
#we will be using basic LSTM, which accepts input in ```[num_inputs, time_steps, data_points], therefore reshaping as per that```
X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1]))
X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1]))
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
x_points = X_train.shape[-1]
print("one input contains {} points".format(x_points))
model = Sequential()
model.add(LSTM(4, input_shape=(1, x_points)))
model.add(Dense(4))
model.compile(loss='mean_squared_error', optimizer='adam')
model.summary()
model.fit(X_train, y_train, epochs=500, batch_size=5, verbose=2)
output = list(map(np.ceil, model.predict(X_test)))
print(output)
we have used the simpler model, this further can be improved to get better results.
I am trying to implement q-learning with an action-value approximation-function. I am using openai-gym and the "MountainCar-v0" enviroment to test my algorithm out. My problem is, it does not converge or find the goal at all.
Basically the approximator works like the following, you feed in the 2 features: position and velocity and one of the 3 actions in a one-hot encoding: 0 -> [1,0,0], 1 -> [0,1,0] and 2 -> [0,0,1]. The output is the action-value approximation Q_approx(s,a), for one specific action.
I know that usually, the input is the state (2 features) and the output layer contains 1 output for each action. The big difference that I see is that I have run the feed forward pass 3 times (one for each action) and take the max, while in the standard implementation you run it once and take the max over the output.
Maybe my implementation is just completely wrong and I am thinking wrong. Gonna paste the code here, it is a mess but I am just experimenting a bit:
import gym
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation
env = gym.make('MountainCar-v0')
# The mean reward over 20 episodes
mean_rewards = np.zeros(20)
# Feature numpy holder
features = np.zeros(5)
# Q_a value holder
qa_vals = np.zeros(3)
one_hot = {
0 : np.asarray([1,0,0]),
1 : np.asarray([0,1,0]),
2 : np.asarray([0,0,1])
}
model = Sequential()
model.add(Dense(20, activation="relu",input_dim=(5)))
model.add(Dense(10,activation="relu"))
model.add(Dense(1))
model.compile(optimizer='rmsprop',
loss='mse',
metrics=['accuracy'])
epsilon_greedy = 0.1
discount = 0.9
batch_size = 16
# Experience replay containing features and target
experience = np.ones((10*300,5+1))
# Ring buffer
def add_exp(features,target,index):
if index % experience.shape[0] == 0:
index = 0
global filled_once
filled_once = True
experience[index,0:5] = features
experience[index,5] = target
index += 1
return index
for e in range(0,100000):
obs = env.reset()
old_obs = None
new_obs = obs
rewards = 0
loss = 0
for i in range(0,300):
if old_obs is not None:
# Find q_a max for s_(t+1)
features[0:2] = new_obs
for i,pa in enumerate([0,1,2]):
features[2:5] = one_hot[pa]
qa_vals[i] = model.predict(features.reshape(-1,5))
rewards += reward
target = reward + discount*np.max(qa_vals)
features[0:2] = old_obs
features[2:5] = one_hot[a]
fill_index = add_exp(features,target,fill_index)
# Find new action
if np.random.random() < epsilon_greedy:
a = env.action_space.sample()
else:
a = np.argmax(qa_vals)
else:
a = env.action_space.sample()
obs, reward, done, info = env.step(a)
old_obs = new_obs
new_obs = obs
if done:
break
if filled_once:
samples_ids = np.random.choice(experience.shape[0],batch_size)
loss += model.train_on_batch(experience[samples_ids,0:5],experience[samples_ids,5].reshape(-1))[0]
mean_rewards[e%20] = rewards
print("e = {} and loss = {}".format(e,loss))
if e % 50 == 0:
print("e = {} and mean = {}".format(e,mean_rewards.mean()))
Thanks in advance!
There shouldn't be much difference between the actions as inputs to your network or as different outputs of your network. It does make a huge difference if your states are images for example. because Conv nets work very well with images and there would be no obvious way of integrating the actions to the input.
Have you tried the cartpole balancing environment? It is better to test if your model is working correctly.
Mountain climb is pretty hard. It has no reward until you reach the top, which often doesn't happen at all. The model will only start learning something useful once you get to the top once. If you are never getting to the top you should probably increase your time doing exploration. in other words take more random actions, a lot more...
I am currently working on a project where I must analyze data and find a period for the graph. The data contains outliers. I need a function that will make a line of best fit for the function.
I attempted to simply get a sin graph on the plot, but I could not even do that. Can anyone give me a starting hint?
import os
import pyfits as fits
import numpy as np
import pylab
import random
import scipy.optimize
import scipy.signal
from numpy import arange
from matplotlib import pyplot
from scipy.optimize import curve_fit
filename = 'C:\Users\Ken Preiser\Desktop\Space thing\Snapshots\BAT_70m_snapshot_SWIFT_J1647.9-4511B.lc'
namePortion = filename[-39:]
hdulist = fits.open(filename, 'readonly', None, False) #{unpacks file) name, mode, memorymap, savebackup
data = hdulist[1].data
datapoints = 23310
def sinfunc(a, b, c): #I tried graphing a sinfunction, but it did not work...
return a*np.sin(bx-c)
time = data.field('TIME')
time = time / 86400.0
timeViewingThreshold = 10
rateViewingThreshold = .01
rate = np.sum(data['RATE'][:,:4], axis=1)
average = np.sum(rate)/23310
error = data.field('ERROR')
error = np.sqrt(np.sum(data['ERROR'][:,:4]**2, axis=1))
print rate.size,(", rate")
print time.size,(", time")
fig = pylab.figure()
ax = fig.add_subplot(111)
ax.set_xlabel('Time')
ax.set_ylabel('Rate')
ax.set_title('Rate vs Time graph: ' + namePortion)
pylab.plot(time, rate, 'o')
pyplot.xlim(min(time) - timeViewingThreshold, max(time) + timeViewingThreshold)
pyplot.ylim(min(rate) - rateViewingThreshold, max(rate) + rateViewingThreshold)
ax.errorbar(time, rate, xerr=0, yerr=error)
pylab.show()
(the outputs)
http://imgur.com/jbfuxOA
You're trying to fit points to the model: y = sin(ax + b). Since you're using linear regression, you need a linear model. So one way to do that is compute arcsin for each point and now compute the linear regression. The model is now: arcsin(y) = ax + b. The regression model gives you a and b which is what you're after. You should be able to test this out pretty quickly in excel, then code it up once the nuances are figured out.