My MySQL server is processing about 180 queries per second, the vast majority of which are very fast. However, about 1 in 1,000 queries takes over a second and I can't work out why.
e.g.
SHOW tables FROM mydbname LIKE 'tablename'
took 1.00054. If I re-run that query manually it takes 10ms.
In a sample of 55,000 queries, 44 took over 1 second then the next slowest was 0.28. There are no long INSERT or UPDATE queries. Server load is less than 1. Memory is not being swapped.
How do I track down this annoying problem? It's make my web pages get served up too slowly.
I don't know what client language you are using, but it could be the garbage collector kicking in. Once every 1,000 requests doesn't sound unreasonable for garbage collection to make itself known.
In Java, this can probably be tuned a bit using one of the parallel garbage collectors available (don't know which one though, been a while since I messed with Java).
4GB of RAM is small these days.
innodb_buffer_pool_size should be 600M if the server is primarily for MariaDB.
A scan of "a table that is 1.6 Gib" will blow out the buffer_pool, leading to sluggishness of anything else running at the same time. Even an index scan may blow out the cache.
"All the queries I am referring to use indexes" - But are they optimal. (Many programmers don't yet understand the beauty of a carefully selected 'composite' index.)
Is the machine swapping any? (That could lead to serious slowdowns.)
SHOW TABLES requires a lot of file-system I/O (in 10.1).
Can you provide another sample of the 44 queries slower than 1s.
Related
I'm running MariaDB 10.2.31 on Ubuntu 18.4.4 LTS.
On a regular basis I encounter the following conundrum - especially when starting out in the morning, that is when my DEV environment has been idle for the night - but also during the day from time to time.
I have a table (this applies to other tables as well) with approx. 15.000 rows and (amongst others) an index on a VARCHAR column containing on average 5 to 10 characters.
Notably, most columns including this one are GENERATED ALWAYS AS (JSON_EXTRACT(....)) STORED since 99% of my data comes from a REST API as JSON-encoded strings (and conveniently I simply store those in one column and extract everything else).
When running a query on that column WHERE colname LIKE 'text%' I find query-result durations of i.e. 0.006 seconds. Nice. When I have my query EXPLAINed, I can see that the index is being used.
However, as I have mentioned, when I start out in the morning, this takes way longer (14 seconds this morning). I know about the query cache and I tried this with query cache turned off (both via SET GLOBAL query_cache_type=OFF and RESET QUERY CACHE). In this case I get consistent times of approx. 0.3 seconds - as expected.
So, what would you recommend I should look into? Is my DB sleeping? Is there such a thing?
There are two things that could be going on:
1) Cold caches (overnight backup, mysqld restart, or large processing job results in this particular index and table data being evicted from memory).
2) Statistics on the table go stale and the query planner gets confused until you run some queries against the table and the statistics get refreshed. You can force an update using ANALYZE TABLE table_name.
3) Query planner heisenbug. Very common in MySQL 5.7 and later, never seen it before on MariaDB so this is rather unlikely.
You can get to the bottom of this by enablign the following in the config:
log_output='FILE'
log_slow_queries=1
log_slow_verbosity='query_plan,explain'
long_query_time=1
Then review what is in the slow log just after you see a slow occurrence. If the logged explain plan looks the same for both slow and fast cases, you have a cold caches issue. If they are different, you have a table stats issue and you need to cron ANALYZE TABLE at the end of the over night task that reads/writes a lot to that table. If that doesn't help, as a last resort, hard code an index hint into your query with FORCE INDEX (index_name).
Enable your slow query log with log_slow_verbosity=query_plan,explain and the long_query_time sufficient to catch the results. See if occasionally its using a different (or no) index.
Before you start your next day, look at SHOW GLOBAL STATUS LIKE "innodb_buffer_pool%" and after your query look at the values again. See how many buffer pool reads vs read requests are in this status output to see if all are coming off disk.
As #Solarflare mentioned, backups and nightly activity might be purging the innodb buffer pool of cached data and reverting bad to disk to make it slow again. As part of your nightly activites you could set innodb_buffer_pool_dump_now=1 to save the pages being hot before scripted activity and innodb_buffer_pool_load_now=1 to restore it.
Shout-out and Thank you to everyone giving valuable insight!
From all the tips you guys gave I think I am starting to understand the problem better and beginning to narrow it down:
First thing I found was my default innodb_buffer_pool_size of 134 MB. With the sort and amount of data I'm processing this is ridiculously low - so I was able to increase it.
Very helpful post: https://dba.stackexchange.com/a/27341
And from the docs: https://dev.mysql.com/doc/refman/8.0/en/innodb-buffer-pool-resize.html
Now that I have increased it to close to 2GB and am able to monitor its usage and RAM usage in general (cli: cat /proc/meminfo) I realize that my 4GB RAM is in fact on the low side of things. I am nowhere near seeing any unused overhead (buffer usage still at 99% and free RAM around 100MB).
I will start to optimize RAM usage of my daemon next and see where this leads - but this will not free enough RAM altogether.
#danblack mentioned innodb_buffer_pool_dump_now and innodb_buffer_pool_load_now. This is an interesting approach to maybe use whenever the daemon accesses the DB as I would love to separate my daemon's buffer usage from the front end's (apparently this is not possible!). I will look into this further but as my daemon is running all the time (not only at night) this might not be feasible.
#Gordan Bobic mentioned "refreshing" DBtables by using ANALYZE TABLE tableName. I found this to be quite fast and incorporated it into the daemon after each time it does an extensive read/write. This increases daemon run times by a few seconds but this is no issue at all. And I figure I can't go wrong with it :)
So, in the end I believe my issue to be a combination of things: Too small buffer size, too small RAM, too many read/write operations for that environment (evicting buffered indexes etc.).
Also I will have to learn more about memory allocation etc and optimize this better (large-pages=1 etc).
I took over a project and have 2 MyISAM tables.
table1 with approx. 1M rows, and
table2 with approx. 100K rows.
In the project these tables are accessed often, and at first it seems ok.
After I installed the project on a Windows 8.1 for local development I found that every day, the first time I access the site, my query takes 14 seconds. A bit too much.
Afterwards is less than 0.1 second.
Now, since on dev this accumulated with another query runs into a timeout-exception for php, it got me concerned about whether it's recommended to do anything about it or not. On production it seems not to occur (or hard to reproduce).
I heard of things like warm cache or optimize query but don't know what is meant by that.
What do experts like you do in this case?
I had another question set up here trying to see whether I can optimize the query.
Changing to InnoDB doesn't seem to have an impact.
The "first" time you run a query, two things may or may not happen:
Lots of disk I/O may be done to fetch the index blocks and/or data blocks from disk. (If other queries happened to have fetched those blocks, the blocks may be cached already.) (14s vs 0.1s is more than I usually see for this cold/warm cache difference.)
If the "Query cache" was on, the first SELECT and its resultset were stored in the QC. The second call may have found it there and returned the result almost instantly. (Usually this is ~1ms, not the 100ms you mentioned.) The QC can be bypassed for a single query by saying SELECT SQL_NO_CACHE ....
Since it is annoying you daily, you may as well go through the exercise of trying to optimize the query. If the tables are growing daily, it may get slower and slower over time. Note that if production needs to be restarted for any reason, that query may timeout on it. So, yes, try to optimize it.
A million rows is beginning to be "big".
The characteristics of this indicate that you are I/O-bound only initially. So it does not indicate that key_buffer_size and innodb_buffer_pool_size are too low.
If you want to discuss the performance of a particular query, start a new thread and provide SHOW CREATE TABLE and EXPLAIN SELECT ....
The Situation:
I use a (php) cronjob to keep my database up-to-date. the affected table contains about 40,000 records. basically, the cronjob deletes all entries and inserts them afterwards (with different values ofc). I have to do it this way, because they really ALL change, because they are all interrelated.
The Problem:
Actually, everything works fine. The cronjob is doin' his job within 1.5 to 2 seconds (again, for about 40k inserts - i think this is adequate). MOSTLY.. But sometimes, the query takes up to 60, 90 or even 120 seconds!
I indexed my database. And I think query is good working, due to the fact it only needs 2 seconds mots of the time. I close the connection via mysql_close();
Do you have any ideas? If you need more information please tell me.
Thanks in advance.
Edit: Well, it seems like there was no problem with the inserts. it was a complex SELECT query, that made some trouble. Tho, thanks to everyone who answered!
[Sorry, apparently I haven't mastered the formatting yet]
From what I read, I can conclude that your cronjob is using bulk-insert statements. If you know when cronjob works, I suggest you to start a Database Engine Tuning Advisor session and see what other processes are running while the cronjob do its things. A bulk-insert has some restrictions with the number of fields and the number of rows at once. You could read the subtitles of this msdn http://technet.microsoft.com/en-us/library/ms188365.aspx
Performance Considerations
If the number of pages to be flushed in a
single batch exceeds an internal threshold, a full scan of the buffer
pool might occur to identify which pages to flush when the batch
commits. This full scan can hurt bulk-import performance. A likely
case of exceeding the internal threshold occurs when a large buffer
pool is combined with a slow I/O subsystem. To avoid buffer
overflows on large machines, either do not use the TABLOCK hint (which
will remove the bulk optimizations) or use a smaller batch size
(which preserves the bulk optimizations). Because computers vary, we
recommend that you test various batch sizes with your data load to
find out what works best for you.
I ran a lookup test against an indexed MySQL table containing 20,000,000 records, and according to my results, it takes 0.004 seconds to retrieve a record given an id--even when joining against another table containing 4,000 records. This was on a 3GHz dual-core machine, with only one user (me) accessing the database. Writes were also fast, as this table took under ten minutes to create all 20,000,000 records.
Assuming my test was accurate, can I expect performance to be as as snappy on a production server, with, say, 200 users concurrently reading from and writing to this table?
I assume InnoDB would be best?
That depends on the storage engine you're going to use and what's the read/write ratio.
InnoDB will be better if there are lot of writes. If it's reads with very occasional write, MyISAM might be faster. MyISAM uses table level locking, so it locks up whole table whenever you need to update. InnoDB uses row level locking, so you can have concurrent updates on different rows.
InnoDB is definitely safer, so I'd stick with it anyhow.
BTW. remember that right now RAM is very cheap, so buy a lot.
Depends on any number of factors:
Server hardware (Especially RAM)
Server configuration
Data size
Number of indexes and index size
Storage engine
Writer/reader ratio
I wouldn't expect it to scale that well. More importantly, this kind of thing is to important to speculate about. Benchmark it and see for yourself.
Regarding storage engine, I wouldn't dare to use anything but InnoDB for a table of that size that is both read and written to. If you run any write query that isn't a primitive insert or single row update you'll end up locking the table using MyISAM, which yields terrible performance as a result.
There's no reason that MySql couldn't handle that kind of load without any significant issues. There are a number of other variables involved though (otherwise, it's a 'how long is a piece of string' question). Personally, I've had a number of tables in various databases that are well beyond that range.
How large is each record (on average)
How much RAM does the database server have - and how much is allocated to the various configurations of Mysql/InnoDB.
A default configuration may only allow for a default 8MB buffer between disk and client (which might work fine for a single user) - but trying to fit a 6GB+ database through that is doomed to failure. That problem was real btw - and was causing several crashes a day of a database/website till I was brought in to trouble-shoot it.
If you are likely to do a great deal more with that database, I'd recommend getting someone with a little more experience, or at least oing what you can to be able to give it some optimisations. Reading 'High Performance MySQL, 2nd Edition' is a good start, as is looking at some tools like Maatkit.
As long as your schema design and DAL are constructed well enough, you understand query optimization inside out, can adjust all the server configuration settings at a professional level, and have "enough" hardware properly configured, yes (except for sufficiently pathological cases).
Same answer both engines.
You should probably perform a load test to verify, but as long as the index was created properly (meaning indexes are optimized to your query statements), the SELECT queries should perform at an acceptable speed (the INSERTS and/or UPDATES may be more of a speed issue though depending on how many indexes you have, and how large the indexes get).
I work on a big web application that uses a MySQL 5.0 database with InnoDB tables. Twice over the last couple of months, we have experienced the following scenario:
The database server runs fine for weeks, with low load and few slow queries.
A frequently-executed query that previously ran quickly will suddenly start running very slowly.
Database load spikes and the site hangs.
The solution in both cases was to find the slow query in the slow query log and create a new index on the table to speed it up. After applying the index, database performance returned to normal.
What's most frustrating is that, in both cases, we had no warning about the impending doom; all of our monitoring systems (e.g., graphs of system load, CPU usage, query execution rates, slow queries) told us that the database server was in good health.
Question #1: How can we predict these kinds of tipping points or avoid them altogether?
One thing we are not doing with any regularity is running OPTIMIZE TABLE or ANALYZE TABLE. We've had a hard time finding a good rule of thumb about how often (if ever) to manually do these things. (Since these commands LOCK tables, we don't want to run them indiscriminately.) Do these scenarios sound like the result of unoptimized tables?
Question #2: Should we be manually running OPTIMIZE or ANALYZE? If so, how often?
More details about the app: database usage pattern is approximately 95% reads, 5% writes; database executes around 300 queries/second; the table used in the slow queries was the same in both cases, and has hundreds of thousands of records.
The MySQL Performance Blog is a fantastic resource. Namely, this post covers the basics of properly tuning InnoDB-specific parameters.
I've also found that the PDF version of the MySQL Reference Manual to be essential. Chapter 7 covers general optimization, and section 7.5 covers server-specific optimizations you can toy with.
From the sound of your server, the query cache may be of IMMENSE value to you.
The reference manual also gives you some great detail concerning slow queries, caches, query optimization, and even disk seek analysis with indexes.
It may be worth your time to look into multi-master replication, allowing you to lock one server entirely and run OPTIMIZE/ANALYZE, without taking a performance hit (as 95% of your queries are reads, the other server could manage the writes just fine).
Section 12.5.2.5 covers OPTIMIZE TABLE in detail, and 12.5.2.1 covers ANALYZE TABLE in detail.
Update for your edits/emphasis:
Question #2 is easy to answer. From the reference manual:
OPTIMIZE:
OPTIMIZE TABLE should be used if you have deleted a large part of a table or if you have made many changes to a table with variable-length rows. [...] You can use OPTIMIZE TABLE to reclaim the unused space and to defragment the data table.
And ANALYZE:
ANALYZE TABLE analyzes and stores the key distribution for a table. [...] MySQL uses the stored key distribution to decide the order in which tables should be joined when you perform a join on something other than a constant. In addition, key distributions can be used when deciding which indexes to use for a specific table within a query.
OPTIMIZE is good to run when you have the free time. MySQL optimizes well around deleted rows, but if you go and delete 20GB of data from a table, it may be a good idea to run this. It is definitely not required for good performance in most cases.
ANALYZE is much more critical. As noted, having the needed table data available to MySQL (provided with ANALYZE) is very important when it comes to pretty much any query. It is something that should be run on a common basis.
Question #1 is a bit more of a trick. I would watch the server very carefully when this happens, namely disk I/O. My bet would be that your server is thrashing either your swap or the (InnoDB) caches. In either case, it may be query, tuning, or load related. Unoptimized tables could cause this. As mentioned, running ANALYZE can immensely help performance, and will likely help out too.
I haven't found any good way of predicting MySQL "tipping points" -- and I've run into a few.
Having said that, I've found tipping points are related to table size. But not merely raw table size, rather how big the "area of interest" is to a query. For example, in a table of over 3 million rows and about 40 columns, about three-quarters integers, most queries that would easily select a portion of them based on indices are fast. However, when one value in a query on one indexed column means two-thirds of the rows are now "interesting", the query is now about 5-times slower than normal. Lesson: try to arrange your data so such a scan isn't necessary.
However, such behaviour now gives you a size to look for. This size will be heavily dependant on your server setup, the MySQL server variables and the table's schema and data.
Similarly, I've seen reporting queries run in reasonable time (~45 seconds) if the period is two weeks, but take half-an-hour if the period is extended to four weeks.
Use slow query log that will help you to narrow down the queries you want to optimize.
For time critical queries it sometimes better to keep stable plan by using hints.
It sounds like you have a frustrating situation and maybe not the best code review process and development environment.
Whenever you add a new query to your code you need to check that it has the appropriate indexes ready and add those with the code release.
If you don't do that your second option is to constantly monitor the slow query log and then go beat the developers; I mean go add the index.
There's an option to enable logging of queries that didn't use an index which would be useful to you.
If there are some queries that "works and stops working" (but are "using and index") then it's likely that the query wasn't very good in the first place (low cardinality in the index; inefficient join; ...) and the first rule of evaluating the query carefully when it's added would apply.
For question #2 - On InnoDB "analyze table" is basically free to run, so if you have bad join performance it doesn't hurt to run it. Unless the balance of the keys in the table are changing a lot it's unlikely to help though. It almost always comes down to bad queries. "optimize table" rebuilds the InnoDB table; in my experience it's relatively rare that it helps enough to be worth the hassle of having the table unavailable for the duration (or doing the master-master failover stuff while it's running).