I am running a couple of crawlers that produce millions of datasets per day. The bottleneck is the latency between the spiders and the remote database. In case the location of the spider server is too large, the latency will slow the crawler down to a point where it can not longer complete the datasets needed for a day.
In search for a solution I came upon redis with the idea on installing redis the spider server where it will temporarily store the data collected with low latency and then redis will pull that data to mysql some how.
The setup is like this until now:
About 40 spiders running on multiple instances feed one central MySQL8 remote server on a dedicated machine over TCP/IP.
Each spider writes different datasets, one kind of spider gets positions and prices of search results, where there are 100 results with around 200-300 inserts on one page. Delay is about 2-10s between the next request/page.
The later one is the problem as the spider yields every position within that page and creates a remote insert within a transaction, maybe even a connect (not sure at the moment).
This currently only works as spiders and remote MySQL server are close (same data center) with ping times of 0.0x ms, it does not work with ping times of 50ms as the spiders can not write fast enough.
Is redis or maybe DataMQ a valid approach to solve the problem or are there other recommended ways of doing this?
Did you mean you have installed a Redis Server on each spider?
Actually it was not a good solution for you case. But if you have already done this and still want to use MySQL to persistent your data, cronjob on each server will be an option.
You can create a cronjob on each spider server(based on your dataset and your need, you can choose daily or hourly sync job). And write a data transfer script to scan your Redis and transfer to MySQL tables.
I recommend using MongoDB instead of MySQL to store data
QUESTION OUTLINE
Our AWS RDS instance starts slowing down after about 7-14 days, by a quite large factor (~400% load times for a specific set of queries). RDS monitoring shows no signs of resource shortage. (see below the question update for detailed problem description)
Question Update
So after more than one month of investigating and some developer support by AWS, I am not exactly closer to a solution.
Here are a couple of steps which I checked off the list, more or less without any further hint of the problem:
Index / Fragmentation (all tables have correct indexes/keys and have no fragmentation)
MySQL Stats Update (manually updating stats source)
Thread Concurrency (changing innodb_thread_concurrency to various different parameters)
Query Cache Hit Ratio doesn't show problems
EXPLAIN to see if any SELECTs are actually slow or not using indexes/keys
SLOW QUERY LOG (returns no results, because see paragraph below, it's a number of prepared SELECTs)
RDS and EC2 are within one VPC
For explanation, the used PlayFramework (2.3.8) has BoneCP and we are using eBeans to select our data. So basically I am running through a nested object and all those child objects, this produces a couple of hundred prepared SELECTs for the API call in question. This should basically also be fine for the used hardware, neither CPU nor RAM are extensively used by these operations.
I also included NewRelic for more insights on this issue and did some JVM profiling. Obviously, most of the time is consumed by NETTY/eBeans?
Is anyone able to make sense of this?
ORIGINAL QUESTION: Problem Outline
Our AWS RDS instance starts slowing down after about 7-14 days, by a quite large factor (~400% load times for a specific set of queries). RDS monitoring shows no signs of resource shortage.
Infrastructure
We run a PlayFramework backend for a mobile app on AWS EC2 instances, connected to AWS RDS MySQL instances, one PROD environment, one DEV environment. Usually the PROD EC2 instance is pointing to the PROD RDS instance, and the DEV EC2 points to the DEV RDS (hi from captain obvious!); however sometimes we also let the DEV EC2 point to the PROD DB for some testing purposes. The PlayFramework in use is working with BoneCP.
Detailed Problem Description
In a quite essential sync process, our app is making a certain API call many times a day per user. I discussed the backgrounds of the functionality in this SO question, where, thanks to comments, I could nail the problem down to be a MySQL issue of some kind.
In short, the API call is loading a set of data, the maximum is about 1MB of json data, which currently takes about 18s to load. When things are running perfectly fine, this takes about 4s to load.
Curious enough, what "solved" the problem last time was upgrading the RDS instance to another instance type (from db.m3.large to db.m4.large, which is just a very marginal step). Now, after about 2-3 weeks, the RDS instance is once again performing slow as before. Rebooting the RDS instance showed no effect. Also re-launching the EC2 instance shows no effect.
I also checked if the indices of the affected mySQL tables are set properly, which is the case. The API call itself is not eager-loading any BLOB fields or similar, I double-checked this. The CPU-usage of the RDS instances is below 1% most of the time, when I stress tested it with 100 simultaneous API calls, it went to ~5%, so this is not the bottleneck. Memory is fine too, so I guess the RDS instance doesn't start swapping which could slow down the whole process.
Giving hard evidence, a (smaller) public API call on the DEV environment currently takes 2.30s load, on the PROD environment it takes 4.86s. Which is interesting, because the DEV environment has both in EC2 and RDS a much smaller instance type. So basically the turtle wins the race here. (If you are interested in this API call I am happy to share it with you via PN, but I don't really want to post links to API calls, even if they are basically public.)
Conclusion
Concluding, it feels (I wittingly say 'feels') like the DB is clogged after x days of usage / after a certain amount of API calls. Not sure if this a RDS-specific issue, once I 'largely' reset the DB instance by changing the instance type, things run fast and smooth. But re-creating my DB instance from a snapshot every 2 weeks is not an option, especially if I don't understand why this is happening.
Do you have any ideas what further steps I could take to investigate this matter?
(Too long for just a comment) I know you have checked a lot of things, but I would like to look at them with a different set of eyes...
Please provide
SHOW VARIABLES; (probably need post.it or something, due to size)
SHOW GLOBAL STATUS;
how much RAM? Sounds like 7.5G
The query. -- Unclear what query/queries you are using
SHOW CREATE TABLE for the table(s) in the query -- indexes, datatypes, etc
(Some of the above may help with "clogging over time" question.)
Meanwhile, here are some guesses/questions/etc...
Some other customer sharing the hardware is busy.
It could be a network problem?
Shrink long_query_time to 1 so you can catch slow queries.
When are backups done on your instance?
4s-18s to load a megabyte -- what percentage of that is SQL statements?
Do you "batch" the inserts? Is it a single transaction? Are lengthy queries going on at the same time?
What, if any, MySQL tunables did you change from the AWS defaults?
6GB buffer_pool on a 7.5GB partition? That sounds dangerously tight. Can you see if there was any swapping?
Any PARTITIONing involved? (Of course the CREATE will answer that.)
There is one very important bit of information missing from your description: The total allocated space for the database. I/O for RDS is around 3x the allocated space, so for a 100GB allocation, you should get around 300 IOPS. That allocated space also includes logs.
Since you don't really know what's going on, the first step should be to turn on detailed monitoring, which will give you more idea of what is happening on the instance.
Until you have additional stats gathered during a slowdown, you can try increasing the allocated space, which will increase the IOPS available.
Also, check the events for the db - are logs getting purged on a regular basis? That might indicate that there's not enough space.
Finally, you can try going with PIOPS (provisioned IOPS) if you have an idea of what the application needs, though at this point it sounds like that would be a guess.
maybe your burst credit balance is (slowly) being depleted? finally, you end up with baseline performance, which may appear "too slow".
this would also explain why the upgrade to another instance type did help, as you then start with a full burst balance again.
i would suggest to increase the size of the volume, even if you don't need the extra space, as the baseline performance grows linearly with volume size.
I'm not sure if caching would be the correct term for this but my objective is to build a website that will be displaying data from my database.
My problem: There is a high probability of a lot of traffic and all data is contained in the database.
My hypothesized solution: Would it be faster if I created a separate program (in java for example) to connect to the database every couple of seconds and update the html files (where the data is displayed) with the new data? (this would also increase security as users will never be connecting to the database) or should I just have each user create a connection to MySQL (using php) and get the data?
If you've had any experiences in a similar situation please share, and I'm sorry if I didn't word the title correctly, this is a pretty specific question and I'm not even sure if I explained myself clearly.
Here are some thoughts for you to think about.
First, I do not recommend you create files but trust MySQL. However, work on configuring your environment to support your traffic/application.
You should understand your data a little more (How much is the data in your tables change? What kind of queries are you running against the data. Are your queries optimized?)
Make sure your tables are optimized and indexed correctly. Make sure all your query run fast (nothing causing a long row locks.)
If your tables are not being updated very often, you should consider using MySQL cache as this will reduce your IO and increase the query speed. (BUT wait! If your table is being updated all the time this will kill your server performance big time)
Your query cache is set to "ON". Based on my experience this is always bad idea unless your data does not change on all your tables. When you have it set to "ON" MySQL will cache every query. Then as soon as they data in the table changes, MySQL will have to clear the cached query "it is going to work harder while clearing up cache which will give you bad performance." I like to keep it set to "ON DEMAND"
from there you can control which query should be cache and which should not using SQL_CACHE and SQL_NO_CACHE
Another thing you want to review is your server configuration and specs.
How much physical RAM does your server have?
What types of Hard Drives are you using? SSD is not at what speed do they rotate? perhaps 15k?
What OS are you running MySQL on?
How is the RAID setup on your hard drives? "RAID 10 or RAID 50" will help you out a lot here.
Your processor speed will make a big different.
If you are not using MySQL 5.6.20+ you should consider upgrading as MySQL have been improved to help you even more.
How much RAM does your server have? is your innodb_log_buffer_size set to 75% of your total physical RAM? Are you using innodb table?
You can also use MySQL replication to increase the read sources of the data. So you have multiple servers with the same data and you can point half of your traffic to read from server A and the other half from Server B. so the same work will be handled by multiple server.
Here is one argument for you to think about: Facebook uses MySQL and have millions of hits per seconds but they are up 100% of the time. True they have trillion dollar budget and their network is huge but the idea here is to trust MySQL to get the job done.
I've begun to have some immense server problems lately due to the overload on Insert queries. All of the queries on our server have been optimized throughout time, but the traffic has picked up again and the CPUs are maxing out due to the high amount of INSERT queries.
We run an INSERT .. ON DUPLICATE UPDATE query for every visitor that visits our website to track visitors that are online, as well as users that are online and what page they are on.
I'm not sure what other way to accomplish and don't know what to do in order to reduce the server load.
Any ideas?
My favorite way to handle this is to buffer up visitor data in server memory, and then do bulk inserts every so often.
For example, only write to the database when X amount of visitor-logs have been queued up in memory, where X may be between 10 and 1000 depending upon your application.
Even if the command that you send to the database server still contains 1000 insert commands, there will only be one round trip between your application server and the database server. Thus, you will have removed the overhead of managing many distinct connections.
Furthermore, you might consider a NoSQL hybrid such as elastic search for such data for removing the load for your MySQL Server. It scales extremely well and can be optimized for indexing (inserts), queries, or both.
This seems to be a clear issue; but I was unable to find an explicit answer. Consider a simple mysql database with indexed ID; without any complicated process. Just reading a row with WHERE clause. Does it really need to be cached? Reducing mysql queries apparently satisfies every one. But I tested reading a text from a flat cache file and by mysql query in a for loop of 1 - 100,000 cycles. Reading from flat file was only 1-2 times faster (but needed double memory). The CPU usage (by rough estimate from top in SSH) was almost the same.
Now I do not see any reason for using flat file cache. Am I right? or the case is different in long term? What may make slow query in such a simple system? Is it still useful to reduce mysql queries?
P.S. I do not discuss internal QC or systems like memcached.
It is depending of how you see the problem.
There is a limit on number of mysql connection can be established at any one time.
Holding the mysql connection resources in a busy site could lead to max connection error.
Establish a connection to mysql via TCP is a resource eater (if your database is sitting in different server). In this case, access a local disk file will be much faster.
If your server is located outside the network, the cost of physical distance will be heavier.
If records are updated once daily, stored into cache is truly request once and reused for the day.