PyTorch: Target 1 is out of bounds - deep-learning

I am new to Deep Learning and wondering how to modify my model to fix it.
It says Target 1 is out of bounds, so what parameter should I change to make it works. When the output is changed to 2, it works. However, the goal for the model is to predict 2 classes classification. Also, when output is 2, the training loss becomes nan.
The data is a dataframe with shape (15958, 4) transformed into tensor format.
Sorry Split_NN is a class:
# SplitNN
# to protect privacy and split
class SplitNN:
def __init__(self, models, optimizers):
self.models = models
self.optimizers = optimizers
self.data = []
self.remote_tensors = []
def forward(self, x):
data = []
remote_tensors = []
data.append(self.models[0](x))
if data[-1].location == self.models[1].location:
remote_tensors.append(data[-1].detach().requires_grad_())
else:
remote_tensors.append(
data[-1].detach().move(self.models[1].location).requires_grad_()
)
i = 1
while i < (len(models) - 1):
data.append(self.models[i](remote_tensors[-1]))
if data[-1].location == self.models[i + 1].location:
remote_tensors.append(data[-1].detach().requires_grad_())
else:
remote_tensors.append(
data[-1].detach().move(self.models[i + 1].location).requires_grad_()
)
i += 1
data.append(self.models[i](remote_tensors[-1]))
self.data = data
self.remote_tensors = remote_tensors
return data[-1]
def backward(self):
for i in range(len(models) - 2, -1, -1):
if self.remote_tensors[i].location == self.data[i].location:
grads = self.remote_tensors[i].grad.copy()
else:
grads = self.remote_tensors[i].grad.copy().move(self.data[i].location)
self.data[i].backward(grads)
def zero_grads(self):
for opt in self.optimizers:
opt.zero_grad()
def step(self):
for opt in self.optimizers:
opt.step()
Below are the codes:
Model set up: The Model is a sequential deep learning model, which I tried to use nn.linear to generated binary prediction.
torch.manual_seed(0)
# Define our model segments
input_size = 3
hidden_sizes = [128, 640]
output_size = 1
# original models
models = [
nn.Sequential(
nn.Linear(input_size, hidden_sizes[0]),
nn.ReLU(),
nn.Linear(hidden_sizes[0], hidden_sizes[1]),
nn.ReLU(),
),
nn.Sequential(nn.Linear(hidden_sizes[1], output_size), nn.LogSoftmax(dim=1)),
]
# Create optimisers for each segment and link to them
optimizers = [
optim.SGD(model.parameters(), lr=0.03,)
for model in models
]
Train model is here:
def train(x, target, splitNN):
#1) Zero our grads
splitNN.zero_grads()
#2) Make a prediction
pred = splitNN.forward(x)
#3) Figure out how much we missed by
criterion = nn.NLLLoss()
loss = criterion(pred, target)
#4) Backprop the loss on the end layer
loss.backward()
#5) Feed Gradients backward through the nework
splitNN.backward()
#6) Change the weights
splitNN.step()
return loss, pred
Finally the training part, also the part where problem happen:
the send function is for assigning model to the nodes, cuz this is set up to simulating federated learning.
for i in range(epochs):
running_loss = 0
correct_preds = 0
total_preds = 0
for (data, ids1), (labels, ids2) in dataloader:
# Train a model
data = data.send(models[0].location)
data = data.view(data.shape[0], -1)
labels = labels.send(models[-1].location)
# Call model
loss, preds = train(data.float(), labels, splitNN)
# Collect statistics
running_loss += loss.get()
correct_preds += preds.max(1)[1].eq(labels).sum().get().item()
total_preds += preds.get().size(0)
print(f"Epoch {i} - Training loss: {running_loss/len(dataloader):.3f} - Accuracy: {100*correct_preds/total_preds:.3f}")
The error show the problem occurs at loss, preds = train(data.float(), labels, splitNN)
The actual error message:
During handling of the above exception, another exception occurred:
IndexError Traceback (most recent call last)
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py in nll_loss(input, target, weight, size_average, ignore_index, reduce, reduction)
1836 .format(input.size(0), target.size(0)))
1837 if dim == 2:
-> 1838 ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
1839 elif dim == 4:
1840 ret = torch._C._nn.nll_loss2d(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
IndexError: Target 1 is out of bounds.
Please help me. Thank you

Related

RuntimeError: shape '[128, -1]' is invalid for input of size 378 pytorch

I'm running a spiking neural network for data that has 21 features with a batch size of 128. I get the following error after many iterations of training (this error doesn't arise immediately!):
RuntimeError: shape '[128, -1]' is invalid for input of size 378 pytorch
When I went to go print out what the shapes of the tensors are before, I get the following:
Train
torch.Size([128, 21])
Test
torch.Size([128, 21])
This is my network:
class SpikingNeuralNetwork(nn.Module):
"""
Parameters in SpikingNeuralNetwork class:
1. number_inputs: Number of inputs to the SNN.
2. number_hidden: Number of hidden layers.
3. number_outputs: Number of output classes.
4. beta: Decay rate.
"""
def __init__(self, number_inputs, number_hidden, number_outputs, beta):
super().__init__()
self.number_inputs = number_inputs
self.number_hidden = number_hidden
self.number_outputs = number_outputs
self.beta = beta
# Initialize layers
self.fc1 = nn.Linear(self.number_inputs, self.number_hidden) # Applies linear transformation to all input points
self.lif1 = snn.Leaky(beta = self.beta) # Integrates weighted input over time, emitting a spike if threshold condition is met
self.fc2 = nn.Linear(self.number_hidden, self.number_outputs) # Applies linear transformation to output spikes of lif1
self.lif2 = snn.Leaky(beta = self.beta) # Another spiking neuron, integrating the weighted spikes over time
"""
Forward propagation of SNN. The code below function will only be called once the input argument x
is explicitly passed into net.
#param x: input passed into the network
#return layer of output after applying final spiking neuron
"""
def forward(self, x):
num_steps = 25
# Initialize hidden states at t = 0
mem1 = self.lif1.init_leaky()
mem2 = self.lif2.init_leaky()
# Record the final layer
spk2_rec = []
mem2_rec = []
for step in range(num_steps):
cur1 = self.fc1(x)
spk1, mem1 = self.lif1(cur1, mem1)
cur2 = self.fc2(spk1)
spk2, mem2 = self.lif2(cur2, mem2)
spk2_rec.append(spk2)
mem2_rec.append(mem2)
return torch.stack(spk2_rec, dim = 0), torch.stack(mem2_rec, dim = 0)
This is my training loop:
def training_loop(net, train_loader, test_loader, dtype, device, optimizer):
num_epochs = 1
loss_history = []
test_loss_history = []
counter = 0
# Temporal dynamics
num_steps = 25
# Outer training loop
for epoch in range(num_epochs):
iter_counter = 0
train_batch = iter(train_loader)
# Minibatch training loop
for data, targets in train_batch:
data = data.to(device)
targets = targets.to(device)
# Forward pass
net.train()
print("Train")
print(data.size())
spk_rec, mem_rec = net(data.view(batch_size, -1))
# Initialize the loss and sum over time
loss_val = torch.zeros((1), dtype = dtype, device = device)
for step in range(num_steps):
loss_val += loss_function(mem_rec[step], targets.long().flatten().to(device))
# Gradient calculation and weight update
optimizer.zero_grad()
loss_val.backward()
optimizer.step()
# Store loss history for future plotting
loss_history.append(loss_val.item())
# Test set
with torch.no_grad():
net.eval()
test_data, test_targets = next(iter(test_loader))
test_data = test_data.to(device)
test_targets = test_targets.to(device)
# Test set forward pass
print("Test")
print(test_data.size())
test_spk, test_mem = net(test_data.view(batch_size, -1))
# Test set loss
test_loss = torch.zeros((1), dtype = dtype, device = device)
for step in range(num_steps):
test_loss += loss_function(test_mem[step], test_targets.long().flatten().to(device))
test_loss_history.append(test_loss.item())
# Print train/test loss and accuracy
if counter % 50 == 0:
train_printer(epoch, iter_counter, counter, loss_history, data, targets, test_data, test_targets)
counter = counter + 1
iter_counter = iter_counter + 1
return loss_history, test_loss_history
The error occurs on spk_rec, mem_rec = net(data.view(batch_size, -1)).
The code was adopted from https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_5.html, where it was originally used for the MNIST dataset. However, I am not working with an image dataset. I am working with a dataset that has 21 features and predicts just one target (with 100 classes). I tried to change data.view(batch_size, -1) and test_data.view(batch_size, -1) to data.view(batch_size, 21) and test_data.view(batch_size, 21) based on some other forum answers that I saw, and my program is running for now through the training loop. Does anyone have any suggestions for how I can run through the training with no errors?
EDIT: I now get the error RuntimeError: shape '[128, 21]' is invalid for input of size 378 from spk_rec, mem_rec = net(data.view(batch_size, -1)).
Here are my DataLoaders:
train_loader = DataLoader(dataset = train, batch_size = batch_size, shuffle = True)
test_loader = DataLoader(dataset = test, batch_size = batch_size, shuffle = True)
My batch size is 128.
Tryng to run it by myself to try to solve your problem I luck also: net params and snn.snn.Leaky
import torch
from torch import nn
from torch.utils.data import DataLoader
class SpikingNeuralNetwork(nn.Module):
"""
Parameters in SpikingNeuralNetwork class:
1. number_inputs: Number of inputs to the SNN.
2. number_hidden: Number of hidden layers.
3. number_outputs: Number of output classes.
4. beta: Decay rate.
"""
def __init__(self, number_inputs, number_hidden, number_outputs, beta):
super().__init__()
self.number_inputs = number_inputs
self.number_hidden = number_hidden
self.number_outputs = number_outputs
self.beta = beta
# Initialize layers
self.fc1 = nn.Linear(self.number_inputs,
self.number_hidden) # Applies linear transformation to all input points
self.lif1 = snn.Leaky(
beta=self.beta) # Integrates weighted input over time, emitting a spike if threshold condition is met
self.fc2 = nn.Linear(self.number_hidden,
self.number_outputs) # Applies linear transformation to output spikes of lif1
self.lif2 = snn.Leaky(beta=self.beta) # Another spiking neuron, integrating the weighted spikes over time
"""
Forward propagation of SNN. The code below function will only be called once the input argument x
is explicitly passed into net.
#param x: input passed into the network
#return layer of output after applying final spiking neuron
"""
def forward(self, x):
num_steps = 25
# Initialize hidden states at t = 0
mem1 = self.lif1.init_leaky()
mem2 = self.lif2.init_leaky()
# Record the final layer
spk2_rec = []
mem2_rec = []
for step in range(num_steps):
cur1 = self.fc1(x)
spk1, mem1 = self.lif1(cur1, mem1)
cur2 = self.fc2(spk1)
spk2, mem2 = self.lif2(cur2, mem2)
spk2_rec.append(spk2)
mem2_rec.append(mem2)
return torch.stack(spk2_rec, dim=0), torch.stack(mem2_rec, dim=0)
batch_size = 2
train = torch.rand(128, 21)
test = torch.rand(128, 21)
train_loader = DataLoader(dataset=train, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test, batch_size=batch_size, shuffle=True)
net = SpikingNeuralNetwork(number_inputs=1)
loss_function = nn.CrossEntropyLoss()
optimizer = nn.optim.Adam(net.parameters(), lr=0.1)
def training_loop(net, train_loader, test_loader, dtype, device, optimizer):
num_epochs = 1
loss_history = []
test_loss_history = []
counter = 0
# Temporal dynamics
num_steps = 25
# Outer training loop
for epoch in range(num_epochs):
iter_counter = 0
train_batch = iter(train_loader)
# Minibatch training loop
for data, targets in train_batch:
data = data.to(device)
targets = targets.to(device)
# Forward pass
net.train()
print("Train")
print(data.size())
spk_rec, mem_rec = net(data.view(batch_size, -1))
# Initialize the loss and sum over time
loss_val = torch.zeros((1), dtype=dtype, device=device)
for step in range(num_steps):
loss_val += loss_function(mem_rec[step], targets.long().flatten().to(device))
# Gradient calculation and weight update
optimizer.zero_grad()
loss_val.backward()
optimizer.step()
# Store loss history for future plotting
loss_history.append(loss_val.item())
# Test set
with torch.no_grad():
net.eval()
test_data, test_targets = next(iter(test_loader))
test_data = test_data.to(device)
test_targets = test_targets.to(device)
# Test set forward pass
print("Test")
print(test_data.size())
test_spk, test_mem = net(test_data.view(batch_size, -1))
# Test set loss
test_loss = torch.zeros((1), dtype=dtype, device=device)
for step in range(num_steps):
test_loss += loss_function(test_mem[step], test_targets.long().flatten().to(device))
test_loss_history.append(test_loss.item())
# Print train/test loss and accuracy
if counter % 50 == 0:
train_printer(epoch, iter_counter, counter, loss_history, data, targets, test_data, test_targets)
counter = counter + 1
iter_counter = iter_counter + 1
return loss_history, test_loss_history
Your code works just fine on the MNIST dataset, so I think it might be a problem with how the DataLoader is being called. My guess is that the total dataset is not evenly divisible by your batch_size. If this is true, then you have two options:
Instead of spk_rec, mem_rec = net(data.view(batch_size, -1)), try spk_rec, mem_rec = net(data.flatten(1)) which preserves the first dimension of your data.
Alternatively, you may need to set drop_last=True in the DataLoader functions.

Normalization of the dataset, Error: all elements of input should be between 0 and 1

I have a problem with data normalization in PyTorch when I try to execute the training. First thing you need to know is that the dataset is composed of 3024 signal windows (so 1 channel), each one with a length of 5000 samples, so the dimension of the CSV file is 5000x3024. Each signal has 1 label that needs to be predicted.
Here is the code for how I load and normalize the data:
class CSVDataset(Dataset):
# load the dataset
def __init__(self, path, normalize = False):
# load the csv file as a dataframe
df = read_csv(path)
df = df.transpose()
# store the inputs and outputs
self.X = df.values[:, :-1]
self.y = df.values[:, -1]
print("Dataset length: ", self.X.shape[0])
# ensure input data is floats
self.X = self.X.astype(np.float)
self.y = self.y.astype(np.float)
if normalize:
self.X = self.X.reshape(self.X.shape[1], self.X.shape[0])
min_X = np.min(self.X,0) # returns an array of means for each signal window
max_X = np.max(self.X,0)
self.X = (self.X - min_X)/(max_X-min_X)
min_y = np.min(self.y)
max_y = np.max(self.y)
self.y = (self.y - min_y)/(max_y-min_y)
# reshape input data
self.X = self.X.reshape(self.X.shape[0], 1, self.X.shape[1])
self.y = self.y.reshape(self.y.shape[0], 1)
# label encode target and ensure the values are floats
self.y = LabelEncoder().fit_transform(self.y)
self.y = self.y.astype(np.float)
# prepare the dataset
def prepare_data(path):
# load the dataset
dataset = CSVDataset(path, normalize = True)
# calculate split
train, test = dataset.get_splits()
# prepare data loaders
train_dl = DataLoader(train, batch_size=32, shuffle=True)
test_dl = DataLoader(test, batch_size=1024, shuffle=False)
return train_dl, test_dl
While the train method is:
def train_model(train_dl, model):
# define the optimization
criterion = BCELoss()
optimizer = SGD(model.parameters(), lr=0.01, momentum=0.9)
model = model.float()
# enumerate epochs
for epoch in range(100):
# enumerate mini batches
for i, (inputs, targets) in enumerate(iter(train_dl)):
targets = torch.reshape(targets, (32, 1))
# clear the gradients
optimizer.zero_grad()
# compute the model output
yhat = model(inputs.float())
# calculate loss
loss = criterion(yhat, targets.float())
# credit assignment
loss.backward()
# update model weights
optimizer.step()
The error that I get is in the line loss = criterion(yhat, targets.float()) and it says:
RuntimeError: all elements of input should be between 0 and 1
I have tried inspecting the X in the variable explorer and it doesn't seem that there are any values that are not between 0 and 1. I don't know what I could have done wrong in normalization. Can you help me?
Builtin loss functions refer to input and target to designate the prediction and label instances respectively. The error message should be understood as "input of the criterion" i.e. yhat, and not as "input of the model".
It seems yhat does not belong in [0, 1], while BCELoss expects a probability, not a logit. You can either
add a sigmoid layer as the last layer of your model, or
use nn.BCEWithLogitsLoss instead, which combines a sigmoid and the bce loss.

PyTorch: Batch size=1 but model gives 2 outputs

Here is some part of my PyTorch code:
test_loader = DataLoader(dataset = test_loader_hibiscus, batch_size = 1, shuffle=False, num_workers=0)
test_losses = []
y_pred_list = []
feat_list = []
with torch.no_grad():
model.eval()
test_loss = 0.0
if expe_temoin == False :
for test_dwi,test_adc,test_tmax,test_cbf,test_cbv,test_label in test_loader :
test_dwi = test_dwi.to(device)
test_adc = test_adc.to(device)
test_tmax = test_tmax.to(device)
test_cbf = test_cbf.to(device)
test_cbv = test_cbv.to(device)
in_imgs = torch.cat((train_dwi,train_adc,train_tmax,train_cbf,train_cbv), dim=1)
out_recon, my_feat = model(in_imgs)
print("my_feat", my_feat[0].shape)
But it prints:
my_feat torch.Size([2, 512, 1, 24, 24])
Could someone please tell me why 2 (batch?) Thanks!
Hint: When I run with test data size: 26, its OK, when run with data size: 25, mess up the batch! Is there something about being odd and even?!
Here is the Unet 3d model for 3D reconstruction and segmentation:
class Abstract3DUNet(nn.Module):
def __init__(self, in_channels, out_channels, final_sigmoid, basic_module, f_maps=64, layer_order='gcr',
num_groups=8, num_levels=4, is_segmentation=True, testing=False,
conv_kernel_size=3, pool_kernel_size=2, conv_padding=1, **kwargs):
super(Abstract3DUNet, self).__init__()
self.testing = testing
if isinstance(f_maps, int):
f_maps = number_of_features_per_level(f_maps, num_levels=num_levels)
assert isinstance(f_maps, list) or isinstance(f_maps, tuple)
assert len(f_maps) > 1, "Required at least 2 levels in the U-Net"
# create encoder path
self.encoders = create_encoders(in_channels, f_maps, basic_module, conv_kernel_size, conv_padding, layer_order,
num_groups, pool_kernel_size)
# create decoder path
self.decoders = create_decoders(f_maps, basic_module, conv_kernel_size, conv_padding, layer_order, num_groups,
upsample=True)
# in the last layer a 1×1 convolution reduces the number of output
# channels to the number of labels
self.final_conv = nn.Conv3d(f_maps[0], out_channels, 1)
if is_segmentation:
# semantic segmentation problem
if final_sigmoid:
self.final_activation = nn.Sigmoid()
else:
self.final_activation = nn.Softmax(dim=1)
else:
# regression problem
self.final_activation = None
def forward(self, x):
# encoder part
encoders_features = []
my_feat =[]
for encoder in self.encoders:
x = encoder(x)
# reverse the encoder outputs to be aligned with the decoder
encoders_features.insert(0, x)
# remove the last encoder's output from the list
# !!remember: it's the 1st in the list
my_feat = encoders_features[0:]
encoders_features = encoders_features[1:]
# decoder part
for decoder, encoder_features in zip(self.decoders, encoders_features):
# pass the output from the corresponding encoder and the output
# of the previous decoder
x = decoder(encoder_features, x)
x = self.final_conv(x)
# apply final_activation (i.e. Sigmoid or Softmax) only during prediction. During training the network outputs
# logits and it's up to the user to normalize it before visualising with tensorboard or computing validation metric
if self.testing and self.final_activation is not None:
x = self.final_activation(x)
return x, my_feat
class UNet3D(Abstract3DUNet):
def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr',
num_groups=8, num_levels=4, is_segmentation=True, conv_padding=1, **kwargs):
super(UNet3D, self).__init__(in_channels=in_channels,
out_channels=out_channels,
final_sigmoid=final_sigmoid,
basic_module=DoubleConv,
f_maps=f_maps,
layer_order=layer_order,
num_groups=num_groups,
num_levels=num_levels,
is_segmentation=is_segmentation,
conv_padding=conv_padding,
**kwargs)
My train batch size was 3! When I changed it into 2 or 4 the problem solved!

MXNET CNN+LSTM save/serialize to json

I'm finding a hardtime figuring out how to correctly define a mxnet net so that i can serialize/convert this model to a json file.
The pipeline is composed of a CNN + biLSTM + CTC.
I now i must use HybridBlock and hybridize() but i can't seem to make it work or if its even possible or if there is any other way around.
I'm sure its lack of knowledge on my part and wonder is anyone can help.
Here is the net definition in python:
NUM_HIDDEN = 200
NUM_CLASSES = 13550
NUM_LSTM_LAYER = 1
p_dropout = 0.5
SEQ_LEN = 32
def get_featurizer():
featurizer = gluon.nn.HybridSequential()
# conv layer
featurizer.add(gluon.nn.Conv2D(kernel_size=(3,3), padding=(1,1), channels=32, activation="relu"))
featurizer.add(gluon.nn.BatchNorm())
....
featurizer.hybridize()
return featurizer
class EncoderLayer(gluon.Block):
def __init__(self, **kwargs):
super(EncoderLayer, self).__init__(**kwargs)
with self.name_scope():
self.lstm = mx.gluon.rnn.LSTM(NUM_HIDDEN, NUM_LSTM_LAYER, bidirectional=True)
def forward(self, x):
x = x.transpose((0,3,1,2))
x = x.flatten()
x = x.split(num_outputs=SEQ_LEN, axis = 1) # (SEQ_LEN, N, CHANNELS)
x = nd.concat(*[elem.expand_dims(axis=0) for elem in x], dim=0)
x = self.lstm(x)
x = x.transpose((1, 0, 2)) # (N, SEQ_LEN, HIDDEN_UNITS)
return x
def get_encoder():
encoder = gluon.nn.Sequential()
encoder.add(EncoderLayer())
encoder.add(gluon.nn.Dropout(p_dropout))
return encoder
def get_decoder():
decoder = mx.gluon.nn.Dense(units=ALPHABET_SIZE, flatten=False)
decoder.hybridize()
return decoder
def get_net():
net = gluon.nn.Sequential()
with net.name_scope():
net.add(get_featurizer())
net.add(get_encoder())
net.add(get_decoder())
return net
Any help would be highly appreciated.
Thank you very much.
There are few requirements for a model in Gluon to be exportable to json:
It needs to be hybridizable, meaning that each children block should be hybridizable as well and the model works in both modes
All parameters should be initialized. Since Gluon uses deferred parameter initialization, that means that you should do forward pass at least once before you can save the model.
I did some fixes for your code also introducing new constants when I needed. The most significant changes are:
Don't use split if you can avoid it, because it returns list of NDArrays. Use reshape, which works seemlessly with Symbol as well.
Starting from 1.3.0 version of MXNet, LSTM is also hybridizable, so you can wrap it in a HybridBlock instead of just a Block.
Use HybridSequential.
Here is the adjusted code with an example at the bottom how to save the model and how to load it back. You can find more information in this tutorial.
import mxnet as mx
from mxnet import gluon
from mxnet import nd
BATCH_SIZE = 1
CHANNELS = 100
ALPHABET_SIZE = 1000
NUM_HIDDEN = 200
NUM_CLASSES = 13550
NUM_LSTM_LAYER = 1
p_dropout = 0.5
SEQ_LEN = 32
HEIGHT = 100
WIDTH = 100
def get_featurizer():
featurizer = gluon.nn.HybridSequential()
featurizer.add(
gluon.nn.Conv2D(kernel_size=(3, 3), padding=(1, 1), channels=32, activation="relu"))
featurizer.add(gluon.nn.BatchNorm())
return featurizer
class EncoderLayer(gluon.HybridBlock):
def __init__(self, **kwargs):
super(EncoderLayer, self).__init__(**kwargs)
with self.name_scope():
self.lstm = mx.gluon.rnn.LSTM(NUM_HIDDEN, NUM_LSTM_LAYER, bidirectional=True)
def hybrid_forward(self, F, x):
x = x.transpose((0, 3, 1, 2))
x = x.flatten()
x = x.reshape(shape=(SEQ_LEN, -1, CHANNELS)) #x.split(num_outputs=SEQ_LEN, axis=1) # (SEQ_LEN, N, CHANNELS)
x = self.lstm(x)
x = x.transpose((1, 0, 2)) # (N, SEQ_LEN, HIDDEN_UNITS)
return x
def get_encoder():
encoder = gluon.nn.HybridSequential()
encoder.add(EncoderLayer())
encoder.add(gluon.nn.Dropout(p_dropout))
return encoder
def get_decoder():
decoder = mx.gluon.nn.Dense(units=ALPHABET_SIZE, flatten=False)
return decoder
def get_net():
net = gluon.nn.HybridSequential()
with net.name_scope():
net.add(get_featurizer())
net.add(get_encoder())
net.add(get_decoder())
return net
if __name__ == '__main__':
net = get_net()
net.initialize()
net.hybridize()
fake_data = mx.random.uniform(shape=(BATCH_SIZE, HEIGHT, WIDTH, CHANNELS))
out = net(fake_data)
net.export("mymodel")
deserialized_net = gluon.nn.SymbolBlock.imports("mymodel-symbol.json", ['data'],
"mymodel-0000.params", ctx=mx.cpu())
out2 = deserialized_net(fake_data)
# just to check that we get the same results
assert (out - out2).sum().asscalar() == 0

making my multi-agent environment by deep reinforcement learning

I should make my own environment and apply dqn algorithm in a multi-agent environment.
I have 4 agents . Each state of my environment has 5 variables state=[p1, p2, p3, p4,p5], at each time step,we update the different parameters of all states. Action is one of amount: {-2,-1,0,1,2} given the best q-value.
param0,param1,param2,param3,param4=[[0 for x in range(numframe)] for y in range(number_nodes)]
`timestep p4[agent0]=random.randint(0,2)
p4[agent1]=p4[agent0]+action
p4[agent2]=p4[agent1]+action
p4[agent3]=p4[agent2]+action
(actions find by a DNN in dqn and can be one of {-2,-1,0,1,2})`
param0..5=[[0 for x in range(numframe)] for y in range(number_nodes)]
numframe: shows amount for experience-replay, number_nodes=4 showing number of agents
I have written the following code based on [dqn-keras-code][1],
1- how I could change it to work as multi-agent?
2- how I could change to write my reset? (I should reset to 0each of parameters)
I write some code but as I am beginner in dqn and multi-agent, I saw the following error: (I know it has also some problem related to multi-agent)
line 156, in <module>
state = env.reset()
TypeError: reset() missing 1 required positional argument: 'self'
Could you please help me more than this error how I can fix my reset section and step section?
Here is my code:
import random
import numpy as np
import tensorflow as tf
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
#-----------------------------------------------------------------
global param0,param1,param2,param3,param4,state,next_state,action_space,action_size,w,m, reward,episodes,time_t,state
#--------------------------------------------------------------------------
episodes=2000
number_nodes=5 #one more than number of nodes
timemax=500
action_size=5
state_size=5
action_space=[-2,-1,0,1,2]
m=16 #4*(ltime+ftime)=16
numframe=16
#-------------------------------------------------------------------------
class env:
def __init__(self):
self.action_space=[-2,-1,0,1,2] # X=[-2,2]
self.action_size = len(self.action_space)
self.state = None
return action_space, action_size
def reset(self):
#self.action_space=[0,0,0,0,0]
for ii in range (1,4): #both sides
param1[ii]=0
param2[ii]=0
param3[ii]=0
param4[ii]=0
param0[ii]=0
reward[ii]=0
state[ii]=[param0[ii],param1[ii],param2[ii],param3[ii],param4[ii]]
return state
# def reset(self):
# self.state = self.np_random.uniform(low=-0.05, high=0.05, size=(4,))
# self.steps_beyond_done = None
# return np.array(self.state)
def step(self,action):
state = self.state
param1, param2, param3, param4, param0 = state
param0[0]=random.randint(0,2) #produce a random param0
#relationship between parameteres for refreshing
param0[1]=param0[0]+action
param0[2]=param0[1]+action
param0[3]=param0[2]+action
param0[4]=param0[3]+action
for i in range (1,4):
param1[time_t][i]=param4[time_t][i+1]-param0[i+1]
#action[i]=agent.init(state_size, action_size)
#relationship between parameteres for refreshing
param2[time_t][i]=param0[i]+action
param3[time_t][i]=param2[time_t][i]
param4[time_t][i]=param3[time_t][i]
#param1,param3,param4,param0
next_state[i]=[param1[time_t][i],param2[time_t][i],param3[time_t][i],param4[time_t][i],param0[i]]
cp= [2, 0, 0, 0]
ch= [2, 2, 2, 2]
# reward function
if param1[i]>=0:
reward[i]+=ch[i]*param1[time_t][i]
else:
reward[i]+=cp[i]*param1[time_t][i]
return next_state, reward
#-------------------------------------------------
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.95 # discount rate
self.epsilon = 1.0 # exploration rate
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.model = self._build_model()
def _build_model(self):
# Neural Net for Deep-Q learning Model
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse',
optimizer=Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0]) # returns action
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = (reward + self.gamma *
np.amax(self.model.predict(next_state)[0]))
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self, name):
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)
if __name__ == "__main__":
#env = gym.make('CartPole-v1')
#state_size = env.observation_space.shape[0]
#action_size = env.action_space.n
state_size=4
action_size=5
agent = DQNAgent(state_size, action_size)
# agent.load("./save/cartpole-dqn.h5")
done = False
batch_size = 32
for e in range(episodes):
state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(500):
# env.render()
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
print("episode: {}/{}, score: {}, e: {:.2}"
.format(e, EPISparam2DES, time, agent.epsilon))
break
if len(agent.memory) > batch_size:
agent.replay(batch_size)
# if e % 10 == 0:
# agent.save("./save/cartpole-dqn.h5")
agent = DQNAgent(state_size, action_size)
# agent.load("./save/cartpole-dqn.h5")
[1]: https://github.com/keon/deep-q-learning/blob/master/dqn.py
The DQN algorithm you linked to is for a single agent game. You have to change it quite a bit to work with multiple agents. There are multiple papers written on the subject. If you want to truly understand what your code is doing, I suggest finding a paper that tries to solve an environment similar to yours and then applying the concepts within that paper to your code.