I believe my CUDA application could potentially benefit from shared memory, in order to keep the data near the GPU cores. Right now, I have a single kernel to which I pass a pointer to a previously allocated chunk of device memory, and some constants. After the kernel has finished, the device memory includes the result, which is copied to host memory. This scheme works perfectly and is cross-checked with the same algorithm run on the CPU.
The docs make it quite clear that global memory is much slower and has higher access latency than shared memory, but either way to get the best performance you should make your threads coalesce and align any access. My GPU has Compute Capability 6.1 "Pascal", has 48 kiB of shared memory per thread block and 2 GiB DRAM. If I refactor my code to use shared memory, how do I make sure to avoid bank conflicts?
Shared memory is organized in 32 banks, so that 32 threads from the same block each may simultaneously access a different bank without having to wait. Let's say I take the kernel from above, launch a kernel configuration with one block and 32 threads in that block, and statically allocate 48 kiB of shared memory outside the kernel. Also, each thread will only ever read from and write to the same single memory location in (shared) memory, which is specific to the algorithm I am working on. Given this, I would access those 32 shared memory locations with on offset of 48 kiB / 32 banks / sizeof(double) which equals 192:
__shared__ double cache[6144];
__global__ void kernel(double *buf_out, double a, double b, double c)
{
for(...)
{
// Perform calculation on shared memory
cache[threadIdx.x * 192] = ...
}
// Write result to global memory
buf_out[threadIdx.x] = cache[threadIdx.x * 192];
}
My reasoning: while threadIdx.x runs from 0 to 31, the offset together with cache being a double make sure that each thread will access the first element of a different bank, at the same time. I haven't gotten around to modify and test the code, but is this the right way to align access for the SM?
MWE added:
This is the naive CPU-to-CUDA port of the algorithm, using global memory only. Visual Profiler reports a kernel execution time of 10.3 seconds.
Environment: Win10, MSVC 2019, x64 Release Build, CUDA v11.2.
#include "cuda_runtime.h"
#include <iostream>
#include <stdio.h>
#define _USE_MATH_DEFINES
#include <math.h>
__global__ void kernel(double *buf, double SCREEN_STEP_SIZE, double APERTURE_RADIUS,
double APERTURE_STEP_SIZE, double SCREEN_DIST, double WAVE_NUMBER)
{
double z, y, y_max;
unsigned int tid = threadIdx.x/* + blockIdx.x * blockDim.x*/;
double Z = tid * SCREEN_STEP_SIZE, Y = 0;
double temp = WAVE_NUMBER / SCREEN_DIST;
// Make sure the per-thread accumulator is zero before we begin
buf[tid] = 0;
for (z = -APERTURE_RADIUS; z <= APERTURE_RADIUS; z += APERTURE_STEP_SIZE)
{
y_max = sqrt(APERTURE_RADIUS * APERTURE_RADIUS - z * z);
for (y = -y_max; y <= y_max; y += APERTURE_STEP_SIZE)
{
buf[tid] += cos(temp * (Y * y + Z * z));
}
}
}
int main(void)
{
double *dev_mem;
double *buf = NULL;
cudaError_t cudaStatus;
unsigned int screen_elems = 1000;
if ((buf = (double*)malloc(screen_elems * sizeof(double))) == NULL)
{
printf("Could not allocate memory...");
return -1;
}
memset(buf, 0, screen_elems * sizeof(double));
if ((cudaStatus = cudaMalloc((void**)&dev_mem, screen_elems * sizeof(double))) != cudaSuccess)
{
printf("cudaMalloc failed with code %u", cudaStatus);
return cudaStatus;
}
kernel<<<1, 1000>>>(dev_mem, 1e-3, 5e-5, 50e-9, 10.0, 2 * M_PI / 5e-7);
cudaDeviceSynchronize();
if ((cudaStatus = cudaMemcpy(buf, dev_mem, screen_elems * sizeof(double), cudaMemcpyDeviceToHost)) != cudaSuccess)
{
printf("cudaMemcpy failed with code %u", cudaStatus);
return cudaStatus;
}
cudaFree(dev_mem);
cudaDeviceReset();
free(buf);
return 0;
}
The kernel below uses shared memory instead and takes approximately 10.6 seconds to execute, again measured in Visual Profiler:
__shared__ double cache[1000];
__global__ void kernel(double *buf, double SCREEN_STEP_SIZE, double APERTURE_RADIUS,
double APERTURE_STEP_SIZE, double SCREEN_DIST, double WAVE_NUMBER)
{
double z, y, y_max;
unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x;
double Z = tid * SCREEN_STEP_SIZE, Y = 0;
double temp = WAVE_NUMBER / SCREEN_DIST;
// Make sure the per-thread accumulator is zero before we begin
cache[tid] = 0;
for (z = -APERTURE_RADIUS; z <= APERTURE_RADIUS; z += APERTURE_STEP_SIZE)
{
y_max = sqrt(APERTURE_RADIUS * APERTURE_RADIUS - z * z);
for (y = -y_max; y <= y_max; y += APERTURE_STEP_SIZE)
{
cache[tid] += cos(temp * (Y * y + Z * z));
}
}
buf[tid] = cache[tid];
}
The innermost line inside the loops is typically executed several million times, depending on the five constants passed to the kernel. So instead of thrashing the off-chip global memory, I expected the on-chip shared-memory version to be much faster, but apparently it is not - what am I missing?
Let's say... each thread will only ever read from and write to the same single memory location in (shared) memory, which is specific to the algorithm I am working on.
In that case, it does not make sense to use shared memory. The whole point of shared memory is the sharing... among all threads in a block. Under your assumptions, you should keep your element in a register, not in shared memory. Indeed, in your "MWE Added" kernel - that's probably what you should do.
If your threads were to share information - then the pattern of this sharing would determine how best to utilize shared memory.
Also remember that if you don't read data repeatedly, or from multiple threads, it is much less likely that shared memory will help you - as you always have to read from global memory at least once and write to shared memory at least once to have your data in shared memory.
Related
I am using CUDA 5.5 compute 3.5 on GTX 1080Ti and want to compute this formula:
y = a * a * b / 64 + c * c
Suppose I have these parameters:
a = 5876
b = 0.4474222958088
c = 664
I am computing this both via GPU and on the CPU and they give me different inexact answers:
h_data[0] = 6.822759375000e+05,
h_ref[0] = 6.822760000000e+05,
difference = -6.250000000000e-02
h_data is the CUDA answer, h_ref is the CPU answer. When I plug these into my calculator the GPU answer is closer to the exact answer, and I suspect this has to do with floating point precision. My question now is, how can I get the CUDA solution to match the precision/roundoff of CPU version? If I offset the a parameter by +/-1 the solutions match, but if I offset say the c parameter I still get a difference of 1/16
Here's the working code:
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
__global__ void test_func(float a, float b, int c, int nz, float * __restrict__ d_out)
{
float *fdes_out = d_out + blockIdx.x * nz;
float roffout2 = a * a / 64.f;
//float tmp = fma(roffout2,vel,index*index);
for (int tid = threadIdx.x; tid < nz; tid += blockDim.x) {
fdes_out[tid] = roffout2 * b + c * c;
}
}
int main (int argc, char **argv)
{
// parameters
float a = 5876.0f, b = 0.4474222958088f;
int c = 664;
int nz = 1;
float *d_data, *h_data, *h_ref;
h_data = (float*)malloc(nz*sizeof(float));
h_ref = (float*)malloc(nz*sizeof(float));
// CUDA
cudaMalloc((void**)&d_data, sizeof(float)*nz);
dim3 nb(1,1,1); dim3 nt(64,1,1);
test_func <<<nb,nt>>> (a,b,c,nz,d_data);
cudaMemcpy(h_data, d_data, sizeof(float)*nz, cudaMemcpyDeviceToHost);
// Reference
float roffout2 = a * a / 64.f;
h_ref[0] = roffout2*b + c*c;
// Compare
printf("h_data[0] = %1.12e,\nh_ref[0] = %1.12e,\ndifference = %1.12e\n",
h_data[0],h_ref[0],h_data[0]-h_ref[0]);
// Free
free(h_data); free(h_ref);
cudaFree(d_data);
return 0;
}
I'm compiling only with the-O3 flag.
This small numerical difference of one single-precision ulp occurs because the CUDA compiler applies FMA-merging by default, whereas the host compiler does not do that. FMA-merging can be turned off by adding the command line flag -fmad=false to the invocation of the CUDA compiler driver nvcc.
FMA-merging is a compiler optimization in which an FMUL and a dependent FADD are transformed into a single fused multiply-add, or FMA, instruction. An FMA instruction computes a*b+c such that the full unrounded product a*b enters into the addition with c before a final rounding is applied to produce the final result.
Usually, this has performance advantages, since a single FMA instruction is executed instead of two instructions FMUL, FADD, and all the instructions have similar latency. Usually, this also has accuracy advantages as the use of FMA eliminates one rounding step and guards against subtractive cancellation when a*c and c have opposite signs.
In this case, as noted by OP, the GPU result computed with FMA is slightly more accurate than the host result computed without FMA. Using a higher precision reference, I find that the relative error in the GPU result is -4.21e-8, while the relative error in the host result is 4.95e-8.
This is little more than a thought experiment right now, but I want to check my understanding of the CUDA execution model. Consider the following case:
I am running on a GPU with poor double-precision performance (a non-Tesla card).
I have a kernel that needs to calculate a value using double precision. That value is a constant for the rest of the runtime of the kernel, and it is also constant across a warp.
Is something like the following pseudocode advantageous?
// value that we use later in the kernel; this is constant across all threads
// in a warp
int constant_value;
// check to see if this is the first thread in a warp
enum { warp_size = 32 };
if (!(threadIdx.x & (warp_size - 1))
{
// only do the double-precision math in one thread
constant_value = (int) round(double_precision_calculation());
}
// broadcast constant_value to all threads in the warp
constant_value = __shfl(v, 0);
// go on to use constant_value as needed later in the kernel
The reason why I considered doing this is my (possibly wrong) understanding of how double-precision resources are made available on each multiprocessor. From what I understand, there are simply 1/32 as many double-precision ALUs as single-precision ones on recent Geforce cards. Does this mean that if the other threads in a warp diverge, I can work around this lack of resources, and still get decent performance, as long as the double-precision values that I want can be broadcast to all threads in a warp?
Does this mean that if the other threads in a warp diverge, I can work around this lack of resources, and still get decent performance, as long as the double-precision values that I want can be broadcast to all threads in a warp?
No, you can't.
An instruction issue always occurs at the warp level, even in a warp-diverged scenario. Since it is issued at the warp level, it will require/use/schedule enough execution resources for the warp, even for inactive threads.
Therefore a computation done on only one thread will still use the same resources/scheduling slot as a computation done on all 32 threads in the warp.
For example, a floating point multiply will require 32 instances of usage of a floating point ALU. The exact scheduling of this will vary based on the specific GPU, but you cannot reduce the 32 instance usage to a lower number through warp divergence or any other mechanism.
Based on a question in the comments, here's a worked example on CUDA 7.5, Fedora 20, GT640 (GK208 - has 1/24 ratio of DP to SP units):
$ cat t1241.cu
#include <stdio.h>
#include <time.h>
#include <sys/time.h>
#define USECPSEC 1000000ULL
unsigned long long dtime_usec(unsigned long long start){
timeval tv;
gettimeofday(&tv, 0);
return ((tv.tv_sec*USECPSEC)+tv.tv_usec)-start;
}
const int nTPB = 32;
const int nBLK = 1;
const int rows = 1048576;
const int nSD = 128;
typedef double mytype;
template <bool use_warp>
__global__ void mpy_k(const mytype * in, mytype * out){
__shared__ mytype sdata[nTPB*nSD];
int idx = threadIdx.x + blockDim.x*blockIdx.x;
mytype accum = in[idx];
#pragma unroll 128
for (int i = 0; i < rows; i++)
if (use_warp)
accum += accum*sdata[threadIdx.x+(i&(nSD-1))*nTPB];
else
if (threadIdx.x == 0)
accum += accum*sdata[threadIdx.x+(i&(nSD-1))*nTPB];
out[idx] = accum;
}
int main(){
mytype *din, *dout;
cudaMalloc(&din, nTPB*nBLK*rows*sizeof(mytype));
cudaMalloc(&dout, nTPB*nBLK*sizeof(mytype));
cudaMemset(din, 0, nTPB*nBLK*rows*sizeof(mytype));
cudaMemset(dout, 0, nTPB*nBLK*sizeof(mytype));
mpy_k<true><<<nBLK, nTPB>>>(din, dout); // warm-up
cudaDeviceSynchronize();
unsigned long long dt = dtime_usec(0);
mpy_k<true><<<nBLK, nTPB>>>(din, dout);
cudaDeviceSynchronize();
dt = dtime_usec(dt);
printf("full warp elapsed time: %f\n", dt/(float)USECPSEC);
mpy_k<false><<<nBLK, nTPB>>>(din, dout); //warm up
cudaDeviceSynchronize();
dt = dtime_usec(0);
mpy_k<false><<<nBLK, nTPB>>>(din, dout);
cudaDeviceSynchronize();
dt = dtime_usec(dt);
printf("one thread elapsed time: %f\n", dt/(float)USECPSEC);
cudaError_t res = cudaGetLastError();
if (res != cudaSuccess) printf("CUDA runtime failure %s\n", cudaGetErrorString(res));
return 0;
}
$ nvcc -arch=sm_35 -o t1241 t1241.cu
$ CUDA_VISIBLE_DEVICES="1" ./t1241
full warp elapsed time: 0.034346
one thread elapsed time: 0.049174
$
It is not faster to use just one thread in the warp for a floating-point multiply
I am trying to implement the dot product in CUDA and compare the result with what MATLAB returns. My CUDA code (based on this tutorial) is the following:
#include <stdio.h>
#define N (2048 * 8)
#define THREADS_PER_BLOCK 512
#define num_t float
// The kernel - DOT PRODUCT
__global__ void dot(num_t *a, num_t *b, num_t *c)
{
__shared__ num_t temp[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];
__syncthreads(); //Synchronize!
*c = 0.00;
// Does it need to be tid==0 that
// undertakes this task?
if (0 == threadIdx.x) {
num_t sum = 0.00;
int i;
for (i=0; i<THREADS_PER_BLOCK; i++)
sum += temp[i];
atomicAdd(c, sum);
//WRONG: *c += sum; This read-write operation must be atomic!
}
}
// Initialize the vectors:
void init_vector(num_t *x)
{
int i;
for (i=0 ; i<N ; i++){
x[i] = 0.001 * i;
}
}
// MAIN
int main(void)
{
num_t *a, *b, *c;
num_t *dev_a, *dev_b, *dev_c;
size_t size = N * sizeof(num_t);
cudaMalloc((void**)&dev_a, size);
cudaMalloc((void**)&dev_b, size);
cudaMalloc((void**)&dev_c, size);
a = (num_t*)malloc(size);
b = (num_t*)malloc(size);
c = (num_t*)malloc(size);
init_vector(a);
init_vector(b);
cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);
dot<<<N/THREADS_PER_BLOCK, THREADS_PER_BLOCK>>>(dev_a, dev_b, dev_c);
cudaMemcpy(c, dev_c, sizeof(num_t), cudaMemcpyDeviceToHost);
printf("a = [\n");
int i;
for (i=0;i<10;i++){
printf("%g\n",a[i]);
}
printf("...\n");
for (i=N-10;i<N;i++){
printf("%g\n",a[i]);
}
printf("]\n\n");
printf("a*b = %g.\n", *c);
free(a); free(b); free(c);
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);
}
and I compile it with:
/usr/local/cuda-5.0/bin/nvcc -m64 -I/usr/local/cuda-5.0/include -gencode arch=compute_20,code=sm_20 -o multi_dot_product.o -c multi_dot_product.cu
g++ -m64 -o multi_dot_product multi_dot_product.o -L/usr/local/cuda-5.0/lib64 -lcudart
Information about my NVIDIA cards can be found at http://pastebin.com/8yTzXUuK. I tried to verify the result in MATLAB using the following simple code:
N = 2048 * 8;
a = zeros(N,1);
for i=1:N
a(i) = 0.001*(i-1);
end
dot_product = a'*a;
But as N increases, I'm getting significantly different results (For instance, for N=2048*32 CUDA reutrns 6.73066e+07 while MATLAB returns 9.3823e+07. For N=2048*64 CUDA gives 3.28033e+08 while MATLAB gives 7.5059e+08). I incline to believe that the discrepancy stems from the use of float in my C code, but if I replace it with double the compiler complains that atomicAdd does not support double parameters. How should I fix this problem?
Update: Also, for high values of N (e.g. 2048*64), I noticed that the result returned by CUDA changes at every run. This does not happen if N is low (e.g. 2048*8).
At the same time I have a more fundamental question: The variable temp is an array of size THREADS_PER_BLOCK and is shared between threads in the same block. Is it also shared between blocks or every block operates on a different copy of this variable? Should I think of the method dot as instructions to every block? Can someone elaborate on how exactly the jobs are split and how the variables are shared in this example
Comment this line out of your kernel:
// *c = 0.00;
And add these lines to your host code, before the kernel call (after the cudaMalloc of dev_c):
num_t h_c = 0.0f;
cudaMemcpy(dev_c, &h_c, sizeof(num_t), cudaMemcpyHostToDevice);
And I believe you'll get results that match matlab, more or less.
The fact that you have this line in your kernel unprotected by any synchronization is messing you up. Every thread of every block, whenever they happen to execute, is zeroing out c as you have written it.
By the way, we can do significantly better with this operation in general by using a classical parallel reduction method. A basic (not optimized) illustration is here. If you combine that method with your usage of shared memory and a single atomicAdd at the end (one atomicAdd per block) you'll have a significantly improved implementation. Although it's not a dot product, this example combines those ideas.
Edit: responding to a question below in the comments:
A kernel function is the set of instructions that all threads in the grid (all threads associated with a kernel launch, by definition) execute. However, it's reasonable to think of execution as being managed by threadblock, since the threads in a threadblock are executing together to a large extent. However, even within a threadblock, execution is not in perfect lockstep across all threads, necessarily. Normally when we think of lockstep execution, we think of a warp which is a group of 32 threads in a single threadblock. Therefore, since execution amongst warps within a block can be skewed, this hazard was present even for a single threadblock. However, if there were only one threadblock, we could have gotten rid of the hazard in your code using appropriate sync and control mechanisms like __syncthreads() and (if threadIdx.x == 0) etc. But these mechanisms are useless for the general case of controlling execution across multiple threadsblocks. Multiple threadblocks can execute in any order. The only defined sync mechanism across an entire grid is the kernel launch itself. Therefore to fix your issue, we had to zero out c prior to the kernel launch.
I am reading and testing the examples in the book "Cuda By example. An introduction to General Purpose GPU Programming".
When testing the examples in chapter 7, relative to texture memory, I realized that access to global memory via texture cache is much slower than direct access (My NVIDIA GPU is GeForceGTX 260, compute capability 1.3 and I am using NVDIA CUDA 4.2):
Time per frame with texture fetch (1D or 2D) for a 256*256 image: 93 ms
Time per frame not using texture (just direct global access) for 256*256: 8.5 ms
I have double checked the code several times and I have also been reading the "CUDA C Programming guide" and "CUDA C Best practices Guide" which come along with the SDK, and I do not really understand the problem.
As far as I understand, texture memory is just global memory with a specific access mechanism implementation to make it look like a cache (?). I am wondering whether coalesced access to global memory will make texture fetch slower, but I cannot be sure.
Does anybody have a similar problem?
(I found some links in NVIDIA forums for a similar problem, but the link is no longer available.)
The testing code looks this way, only including the relevant parts:
//#define TEXTURE
//#define TEXTURE2
#ifdef TEXTURE
// According to C programming guide, it should be static (3.2.10.1.1)
static texture<float> texConstSrc;
static texture<float> texIn;
static texture<float> texOut;
#endif
__global__ void copy_const_kernel( float *iptr
#ifdef TEXTURE2
){
#else
,const float *cptr ) {
#endif
// map from threadIdx/BlockIdx to pixel position
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
int offset = x + y * blockDim.x * gridDim.x;
#ifdef TEXTURE2
float c = tex1Dfetch(texConstSrc,offset);
#else
float c = cptr[offset];
#endif
if ( c != 0) iptr[offset] = c;
}
__global__ void blend_kernel( float *outSrc,
#ifdef TEXTURE
bool dstOut ) {
#else
const float *inSrc ) {
#endif
// map from threadIdx/BlockIdx to pixel position
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
int offset = x + y * blockDim.x * gridDim.x;
int left = offset - 1;
int right = offset + 1;
if (x == 0) left++;
if (x == SXRES-1) right--;
int top = offset - SYRES;
int bottom = offset + SYRES;
if (y == 0) top += SYRES;
if (y == SYRES-1) bottom -= SYRES;
#ifdef TEXTURE
float t, l, c, r, b;
if (dstOut) {
t = tex1Dfetch(texIn,top);
l = tex1Dfetch(texIn,left);
c = tex1Dfetch(texIn,offset);
r = tex1Dfetch(texIn,right);
b = tex1Dfetch(texIn,bottom);
} else {
t = tex1Dfetch(texOut,top);
l = tex1Dfetch(texOut,left);
c = tex1Dfetch(texOut,offset);
r = tex1Dfetch(texOut,right);
b = tex1Dfetch(texOut,bottom);
}
outSrc[offset] = c + SPEED * (t + b + r + l - 4 * c);
#else
outSrc[offset] = inSrc[offset] + SPEED * ( inSrc[top] +
inSrc[bottom] + inSrc[left] + inSrc[right] -
inSrc[offset]*4);
#endif
}
// globals needed by the update routine
struct DataBlock {
unsigned char *output_bitmap;
float *dev_inSrc;
float *dev_outSrc;
float *dev_constSrc;
cudaEvent_t start, stop;
float totalTime;
float frames;
unsigned size;
unsigned char *output_host;
};
void anim_gpu( DataBlock *d, int ticks ) {
checkCudaErrors( cudaEventRecord( d->start, 0 ) );
dim3 blocks(SXRES/16,SYRES/16);
dim3 threads(16,16);
#ifdef TEXTURE
volatile bool dstOut = true;
#endif
for (int i=0; i<90; i++) {
#ifdef TEXTURE
float *in, *out;
if (dstOut) {
in = d->dev_inSrc;
out = d->dev_outSrc;
} else {
out = d->dev_inSrc;
in = d->dev_outSrc;
}
#ifdef TEXTURE2
copy_const_kernel<<<blocks,threads>>>( in );
#else
copy_const_kernel<<<blocks,threads>>>( in,
d->dev_constSrc );
#endif
blend_kernel<<<blocks,threads>>>( out, dstOut );
dstOut = !dstOut;
#else
copy_const_kernel<<<blocks,threads>>>( d->dev_inSrc,
d->dev_constSrc );
blend_kernel<<<blocks,threads>>>( d->dev_outSrc,
d->dev_inSrc );
swap( d->dev_inSrc, d->dev_outSrc );
#endif
}
// Some stuff for the events
// ...
}
I have been testing the results with the nvvp (NVIDIA profiler)
The result are quite curious as they show that there are a lot of texture cache misses (which are probably the cause for the bad performance).
The result from the profiler show also information that is difficult to understand even using the guide "CUPTI_User_GUide):
text_cache_hit: Number of texture cache hits (they are accounted only for one SM according to 1.3 capability).
text_cache_miss: Number of texture cache miss (they are accounted only for one SM according to 1.3 capability).
The following are the results for an example of 256*256 without using texture cache (only relevant info is shown):
Name Duration(ns) Grid_Size Block_Size
"copy_const_kernel(...) 22688 16,16,1 16,16,1
"blend_kernel(...)" 51360 16,16,1 16,16,1
Following are the results using 1D texture cache:
Name Duration(ns) Grid_Size Block_Size tex_cache_hit tex_cache_miss
"copy_const_kernel(...)" 147392 16,16,1 16,16,1 0 1024
"blend_kernel(...)" 841728 16,16,1 16,16,1 79 5041
Following are the results using 2D texture cache:
Name Duration(ns) Grid_Size Block_Size tex_cache_hit tex_cache_miss
"copy_const_kernel(...)" 150880 16,16,1 16,16,1 0 1024
"blend_kernel(...)" 872832 16,16,1 16,16,1 2971 2149
These result show several interesting info:
There are no cache hits at all for the "copy const" function (although ideally the memory is "spatially located", in the sense that each thread accesses memory which is near to the memory acceded by other near threads). I guess that this is because the threads within this function do not access memory from other threads, which seems to be the way for the texture cache to be usable (being the "spatially located" concept quite confusing)
There are some cache hits in the 1D and a lot more in the 2D case for the function "blend_kernel". I guess that it is due to the fact that within that function, any thread access memory from their neighbours threads. I cannot understand why there are more in 2D than 1d.
The duration time is greater in the texture cases than in the no texture case (nearly about one order of magnitude). Perhaps related with the so many texture cache misses.
For the "copy_const" function there are 1024 total accesses for the SM and 5120 for the "blend kernel". The relation 5:1 is correct due to the fact that there are 5 fetches in "blend" and only 1 in "copy_const". Anyway, I cannot understand where all this 1024 come from: ideally, this event "text cache miss/hot" only accounts for one SM (I have 24 in my GeForceGTX 260) and it only accounts for warps ( 32 thread size). Therefore, I have 256 threads/32=8 warps per SM and 256 blocks/24 = 10 or 11 "iterations" per SM, so I would be expecting something like 80 or 88 fetches (more over, some other event like sm_cta_launched, which is the number of thread blocks per SM, which is supposed to be supported in my 1.3 device, is always 0...)
I'm trying to learn CUDA and the following code works OK for the values N<= 16384, but fails for the greater values(Summation check at the end of the code fails, c values are always 0 for the index value of i>=16384).
#include<iostream>
#include"cuda_runtime.h"
#include"../cuda_be/book.h"
#define N (16384)
__global__ void add(int *a,int *b,int *c)
{
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if(tid<N)
{
c[tid] = a[tid] + b[tid];
tid += blockDim.x * gridDim.x;
}
}
int main()
{
int a[N],b[N],c[N];
int *dev_a,*dev_b,*dev_c;
//allocate mem on gpu
HANDLE_ERROR(cudaMalloc((void**)&dev_a,N*sizeof(int)));
HANDLE_ERROR(cudaMalloc((void**)&dev_b,N*sizeof(int)));
HANDLE_ERROR(cudaMalloc((void**)&dev_c,N*sizeof(int)));
for(int i=0;i<N;i++)
{
a[i] = -i;
b[i] = i*i;
}
HANDLE_ERROR(cudaMemcpy(dev_a,a,N*sizeof(int),cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(dev_b,b,N*sizeof(int),cudaMemcpyHostToDevice));
system("PAUSE");
add<<<128,128>>>(dev_a,dev_b,dev_c);
//copy the array 'c' back from the gpu to the cpu
HANDLE_ERROR( cudaMemcpy(c,dev_c,N*sizeof(int),cudaMemcpyDeviceToHost));
system("PAUSE");
bool success = true;
for(int i=0;i<N;i++)
{
if((a[i] + b[i]) != c[i])
{
printf("Error in %d: %d + %d != %d\n",i,a[i],b[i],c[i]);
system("PAUSE");
success = false;
}
}
if(success) printf("We did it!\n");
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);
return 0;
}
I think it's a shared memory related problem, but I can't come up with a good explanation(Possible lack of knowledge). Could you provide me an explanation and a workaround to run for the values of N greater than 16384. Here is the specs for my GPU:
General Info for device 0
Name: GeForce 9600M GT
Compute capability: 1.1
Clock rate: 1250000
Device copy overlap : Enabled
Kernel Execution timeout : Enabled
Mem info for device 0
Total global mem: 536870912
Total const mem: 65536
Max mem pitch: 2147483647
Texture Alignment 256
MP info about device 0
Multiproccessor count: 4
Shared mem per mp: 16384
Registers per mp: 8192
Threads in warp: 32
Max threads per block: 512
Max thread dimensions: (512,512,64)
Max grid dimensions: (65535,65535,1)
You probably intended to write
while(tid<N)
not
if(tid<N)
You aren't running out of shared memory, your vector arrays are being copied into your device's global memory. As you can see this has far more space available than the 196608 bytes (16384*4*3) you need.
The reason for your problem is that you are only performing one addition operation per thread so hence with this structure, the maximum dimension that your vectors can be is the block*thread parameters in your kernel launch as tera has pointed out. By correcting
if(tid<N)
to
while(tid<N)
in your code, each thread will perform its addition on multiple indexes and the whole array will be considered.
For more information about the memory hierarchy and the various different places memory can sit, you should read sections 2.3 and 5.3 of the CUDA_C_Programming_Guide.pdf provided with the CUDA toolkit.
Hope that helps.
If N is:
#define N (33 * 1024) //value defined in Cuda by Examples
The same code I found in Cuda by Example, but the value of N was different. I think that o value of N cant be 33 * 1024. I must change the parameters number of block and number of threads per blocks. Because:
add<<<128,128>>>(dev_a,dev_b,dev_c); //16384 threads
(128 * 128) < (33 * 1024) so we have a crash.