Multiple Spawn/expect issue - tcl

Currently, I am working on a script to automatize a Data Collector process. Through a long term run i have split these Collector script into four pieces. Now I want to start these Collectorscripts simultan, but i dont know how to do this. my Code ist working a bit:
package require Expect
log_user 0
set timeout 10200
spawn ./Log.tcl 2 5 1; set spawn1 $spawn_id
spawn ./Log.tcl 3 4 2; set spawn2 $spawn_id
spawn ./Log.tcl 7 8 2; set spawn3 $spawn_id
spawn ./Log.tcl 6 9 3; set spawn4 $spawn_id
expect -i $spawn1 eof {wait ; puts "--- 2,5 fertig ---"}
expect -i $spawn2 eof {wait ; puts "--- 3,4 fertig ---"}
expect -i $spawn3 eof {wait ; puts "--- 7,8 fertig ---"}
expect -i $spawn4 eof {puts "--- 6,9 fertig ---"}
this is run and made the thing. But if one job is ready before the other it will produces zombies. Is there a possibility to made this easy and beautiful? I have try a few thinks with exp_after, exp_background, $any_spawn_id with a while loop. But nothing worked. expect never get eof.

If you need to know the order in which the spawned commands finished, it is difficult to do with wait, but expect will accept a list of spawn ids to listen to simultaneously. For example,
spawn sleep 2
lappend allids $spawn_id
set cmd($spawn_id) "sleep 2"
spawn sleep 1
lappend allids $spawn_id
set cmd($spawn_id) "sleep 1"
while { [llength $allids]>0 } {
expect -i "$allids" eof {
puts "eof on $expect_out(spawn_id) from cmd $cmd($expect_out(spawn_id))"
set idx [lsearch -exact $allids $expect_out(spawn_id)]
set allids [lreplace $allids $idx $idx]
}
}
This runs 2 commands, sleep 2 and sleep 1, and appends each spawn id into the list allids. For convenience, the command is also noted in the array cmd indexed by the spawn id of that command.
The list of all spawn ids is then given to expect eof using -i.
When an eof is matched, the global variable $expect_out(spawn_id) contains the spawn id of the process causing the match. A message is printed after indexing this value in the cmd array.
Finally, the spawn id with eof is removed from the list, and the loop repeated until the list is empty.
Note, you cannot use exp_continue to continue the expect loop, as the -i value does not seem to be re-evaluated.

Related

How to send more than 100 cmd lines

I have expect (tcl) script for automated task working properly - configuring network devices via telnet/ssh. Most of the cases there is 1,2 or 3 command lines to execute, BUT now I have more then 100 command lines to send via expect. How can I achieved this in smart and good scripting way :)
Because I can join all command lines over 100 to a variable "commandAll" with "\n" and "send" them one after another, but I think it's pretty ugly :) Is there a way without stacking them together to be readable in code or external file ?
#!/usr/bin/expect -f
set timeout 20
set ip_address "[lrange $argv 0 0]"
set hostname "[lrange $argv 1 1]"
set is_ok ""
# Commands
set command1 "configure snmp info 1"
set command2 "configure ntp info 2"
set command3 "configure cdp info 3"
#... more then 100 dif commands like this !
#... more then 100 dif commands like this !
#... more then 100 dif commands like this !
spawn telnet $ip_address
# login & Password & Get enable prompt
#-- snnipped--#
# Commands execution
# command1
expect "$enableprompt" { send "$command1\r# endCmd1\r" ; set is_ok "command1" }
if {$is_ok != "command1"} {
send_user "\n### 9 Exit before executing command1\n" ; exit
}
# command2
expect "#endCmd1" { send "$command2\r# endCmd2\r" ; set is_ok "command2" }
if {$is_ok != "command2"} {
send_user "\n### 9 Exit before executing command2\n" ; exit
}
# command3
expect "#endCmd2" { send "$command3\r\r\r# endCmd3\r" ; set is_ok "command3" }
if {$is_ok != "command3"} {
send_user "\n### 9 Exit before executing command3\n" ; exit
}
p.s. I'm using one approach for cheeking is given cmd line is executed successfully but I'm not certain that is perfect way :D
don't use numbered variables, use a list
set commands {
"configure snmp info 1"
"configure ntp info 2"
"configure cdp info 3"
...
}
If the commands are already in a file, you can read them into a list:
set fh [open commands.file]
set commands [split [read $fh] \n]
close $fh
Then, iterate over them:
expect $prompt
set n 0
foreach cmd $commands {
send "$cmd\r"
expect {
"some error string" {
send_user "command failed: ($n) $cmd"
exit 1
}
timeout {
send_user "command timed out: ($n) $cmd"
exit 1
}
$prompt
}
incr n
}
While yes, you can send long sequences of commands that way, it's usually a bad idea as it makes the overall script very brittle; if anything unexpected happens, the script just keeps on forcing the rest of the script over. Instead, it is better to have a sequence of sends interspersed with expects to check that what you've sent has been accepted. The only real case for sending a very long string over is when you're creating a function or file on the other side that will act as a subprogram that you call; in that case, there's no really meaningful place to stop and check for a prompt half way. But that's the exception.
Note that you can expect two things at once; that's often very helpful as it lets you check for errors directly. I mention this because it is a technique often neglected, yet it allows you to make your script far more robust.
...
send "please run step 41\r"
expect {
-re {error: (.*)} {
puts stderr "a problem happened: $expect_out(1,string)"
exit 1
}
"# " {
# Got the prompt; continue with the next step below
}
}
send "please run step 42\n"
...

Automating xterm using Expect

I am trying to automate xterm window using Expect (though I already knew Expect cant control such GUI applications, but there is a tweaked mechanism explained in Exploring Expect)
package require Expect
spawn -pty
stty raw -echo < $spawn_out(slave,name)
regexp ".*(.)(.)" $spawn_out(slave,name) dummy c1 c2
if {[string compare $c1 "/"] == 0} {
set c1 "0"
}
set xterm_pid [exec xterm -S$c1$c2$spawn_out(slave,fd) &]
close -slave
expect "\n" ;# match and discard X window id
set xterm $spawn_id
spawn $env(SHELL)
Don Libes mentioned that from this point, xterm can be automated and he has given example to use xterm with interact command as follows,
interact -u $xterm "X" {
send -i $xterm "Press return to go away: "
set timeout -1
expect -i $xterm "\r" {
send -i $xterm "Thanks!\r\n"
exec kill $xterm_pid
exit
}
}
But, my expectation is send and expect commands to/from xterm. I have tried the following,
send -i $xterm "ls -l\r"; # Prints commands on xterm
expect -i $xterm "\\\$" ; # Trying to match the prompt
But it didn't workout. This example mainly relies on the xterm's command line option -Sccn.
-Sccn
This option allows xterm to be used as an input and output channel for
an existing program and is sometimes used in specialized applications.
The option value specifies the last few letters of the name of a
pseudo-terminal to use in slave mode, plus the number of the inherited
file descriptor. If the option contains a "/" character, that delimits
the characters used for the pseudo-terminal name from the file
descriptor. Otherwise, exactly two characters are used from the option
for the pseudo-terminal name, the remainder is the file descriptor.
Examples:
-S123/45
-Sab34
Note that xterm does not close any file descriptor which it did not open for its own use. It is possible (though probably not
portable) to have an application which passes an open file descriptor
down to xterm past the initialization or the -S option to a process
running in the xterm.
Where am I making the mistake ?
Here I have you a view from my code I used. It is extracted from a complex part.
# create pty for xterm
set spawn(PTTY,PID) [spawn -noecho -pty]
set spawn(PTTY,DEVICE) $spawn_out(slave,name)
set spawn(PTTY) $spawn_id
stty raw -echo < $spawn(PTTY,DEVICE)
regexp ".*(.)(.)" $spawn_out(slave,name) dummy c1 c2
if {[string compare $c1 "/"] == 0} { set c1 0 }
# Start XTERM (using -into can place the xterm in a TK widget)
set pid(XTERM) [::exec xterm -S$c1$c2$spawn_out(slave,fd) {*}$addidtionlXtermOptions &]
close -slave
# Link
set spawn(SHELL,PID) [spawn -noecho {*}$commandInXterm]
set spawn(SHELL) $spawn_id
set spawn(SHELL,DEVICE) $spawn_out(slave,name)
# ...
# send a key or string into the xterm
exp_send -raw -i $spawn(SHELL) -- $key
exp_send -raw -i $spawn(SHELL) -- "$str\r
As Mr.Thomas Dickey pointed out here, I started exploring on the multixterm
and finally able to make a standalone version where the commands are sent to xterm directly.
The part which mainly I have missed in my code is expect_background which actually does the linking in the background. Hope it helps to all those who all wanted to automate the xterm. All credits to Mr.Thomas Dickey and Mr.Don Libes!!!
#!/usr/bin/tclsh
package require Expect
set ::xtermStarted 0
set xtermCmd $env(SHELL)
set xtermArgs ""
# set up verbose mechanism early
set verbose 0
proc verbose {msg} {
if {$::verbose} {
if {[info level] > 1} {
set proc [lindex [info level -1] 0]
} else {
set proc main
}
puts "$proc: $msg"
}
}
# ::xtermSid is an array of xterm spawn ids indexed by process spawn ids.
# ::xtermPid is an array of xterm pids indexed by process spawn id.
######################################################################
# create an xterm and establish connections
######################################################################
proc xtermStart {cmd name} {
verbose "starting new xterm running $cmd with name $name"
######################################################################
# create pty for xterm
######################################################################
set pid [spawn -noecho -pty]
verbose "spawn -pty: pid = $pid, spawn_id = $spawn_id"
set ::sidXterm $spawn_id
stty raw -echo < $spawn_out(slave,name)
regexp ".*(.)(.)" $spawn_out(slave,name) dummy c1 c2
if {[string compare $c1 "/"] == 0} {
set c1 0
}
######################################################################
# start new xterm
######################################################################
set xtermpid [eval exec xterm -name dinesh -S$c1$c2$spawn_out(slave,fd) $::xtermArgs &]
verbose "xterm: pid = $xtermpid"
close -slave
# xterm first sends back window id, save in environment so it can be
# passed on to the new process
log_user 0
expect {
eof {wait;return}
-re (.*)\n {
# convert hex to decimal
# note quotes must be used here to avoid diagnostic from expr
set ::env(WINDOWID) [expr "0x$expect_out(1,string)"]
}
}
######################################################################
# start new process
######################################################################
set pid [eval spawn -noecho $cmd]
verbose "$cmd: pid = $pid, spawn_id = $spawn_id"
set ::sidCmd $spawn_id
######################################################################
# link everything back to spawn id of new process
######################################################################
set ::xtermSid($::sidCmd) $::sidXterm
set ::xtermPid($::sidCmd) $xtermpid
######################################################################
# connect proc output to xterm output
# connect xterm input to proc input
######################################################################
expect_background {
-i $::sidCmd
-re ".+" {
if {!$::xtermStarted} {set ::xtermStarted 1}
sendTo $::sidXterm
}
eof [list xtermKill $::sidCmd]
-i $::sidXterm
-re ".+" {
if {!$::xtermStarted} {set ::xtermStarted 1}
sendTo $::sidCmd
}
eof [list xtermKill $::sidCmd]
}
vwait ::xtermStarted
}
######################################################################
# connect main window keystrokes to all xterms
######################################################################
proc xtermSend {A} {
exp_send -raw -i $::sidCmd -- $A
}
proc sendTo {to} {
exp_send -raw -i $to -- $::expect_out(buffer)
}
######################################################################
# clean up an individual process death or xterm death
######################################################################
proc xtermKill {s} {
verbose "killing xterm $s"
if {![info exists ::xtermPid($s)]} {
verbose "too late, already dead"
return
}
catch {exec /bin/kill -9 $::xtermPid($s)}
unset ::xtermPid($s)
# remove sid from activeList
verbose "removing $s from active array"
catch {unset ::activeArray($s)}
verbose "removing from background handler $s"
catch {expect_background -i $s}
verbose "removing from background handler $::xtermSid($s)"
catch {expect_background -i $::xtermSid($s)}
verbose "closing proc"
catch {close -i $s}
verbose "closing xterm"
catch {close -i $::xtermSid($s)}
verbose "waiting on proc"
wait -i $s
wait -i $::xtermSid($s)
verbose "done waiting"
unset ::xtermSid($s)
set ::forever NO
}
######################################################################
# create windows
######################################################################
# xtermKillAll is not intended to be user-callable. It just kills
# the processes and that's it. A user-callable version would update
# the data structures, close the channels, etc.
proc xtermKillAll {} {
foreach sid [array names ::xtermPid] {
exec /bin/kill -9 $::xtermPid($sid)
}
}
rename exit _exit
proc exit {{x 0}} {xtermKillAll;_exit $x}
xtermStart $xtermCmd $xtermCmd
xtermSend "ls -l\r"
xtermSend "pwd\r"
vwait ::forever

Tcl [exec] process leaves zombie if the process forks and exits

I have a case when the Tcl script runs a process, which does fork(), leaves the forked process to run, and then the main process exits. You can try it out simply by running any program that forks to background, for example gvim, provided that it is configured to run in background after execution: set res [exec gvim].
The main process theoretically exits immediately, the child process runs in background, but somehow the main process hangs up, doesn't exit, stays in zombie state (reports as <defunct> in ps output).
In my case the process I'm starting prints something, I want that something and I want that the process exit and I state it done. The problem is that if I spawn the process using open "|gvim" r, then I cannot also recognize the moment when the process has finished. The fd returned by [open] never reports [eof], even when the program turns into zombie. When I try to [read], just to read everything that the process might print, it hangs up completely.
What is more interesting, is that occasionally both the main process and the forked process print something and when I'm trying to read it using [gets], I get both. If I close the descriptor too early, then [close] throws an exception due to broken pipe. Probably that's why [read] never ends.
I need some method to recognize the moment when the main process exits, while this process could have spawned another child process, but this child process may be completely detached and I'm not interested what it does. I want something that the main process prints before exitting and the script should continue its work while the process running in background is also running and I'm not interested what happens to it.
I have a control over the sources of the process I'm starting. Yes, I did signal(SIGCLD, SIG_IGN) before fork() - didn't help.
Tcl clears up zombies from background process calls the next time it calls exec. Since a zombie really doesn't use much resources (just an entry in the process table; there's nothing else there really) there isn't a particular hurry to clean them up.
The problem you were having with the pipeline was that you'd not put it in non-blocking mode. To detect exit of a pipeline, you're best off using a fileevent which will fire when either there's a byte (or more) to read from the pipe or when the other end of the pipe is closed. To distinguish these cases, you have to actually try to read, and that can block if you over-read and you're not in non-blocking mode. However, Tcl makes working with non-blocking mode easy.
set pipeline [open |… "r"]
fileevent $pipeline readable [list handlePipeReadable $pipeline]
fconfigure $pipeline -blocking false
proc handlePipeReadable {pipe} {
if {[gets $pipe line] >= 0} {
# Managed to actually read a line; stored in $line now
} elseif {[eof $pipe]} {
# Pipeline was closed; get exit code, etc.
if {[catch {close $pipe} msg opt]} {
set exitinfo [dict get $opt -errorcode]
} else {
# Successful termination
set exitinfo ""
}
# Stop the waiting in [vwait], below
set ::donepipe $pipeline
} else {
# Partial read; things will be properly buffered up for now...
}
}
vwait ::donepipe
Be aware that using gvim in a pipeline is… rather more complex than usual, as it is an application that users interact with.
You might find it easier to run a simple exec in a separate thread, provided your version of Tcl is thread-enabled and the Thread package is installed. (That ought to be the case if you're using 8.6, but I don't know if that's true.)
package require Thread
set runner [thread::create {
proc run {caller targetVariable args} {
set res [catch {
exec {*}$args
} msg opt]
set callback [list set $targetVariable [list $res $msg $opt]]
thread::send -async $caller $callback
}
thread::wait
}]
proc runInBackground {completionVariable args} {
global runner
thread::send -async $runner [list run [thread::id] $completionVariable {*}$args]
}
runInBackground resultsVar gvim …
# You can do other things at this point
# Wait until the variable is set (by callback); alternatively, use a variable trace
vwait resultsVar
# Process the results to extract the sense
lassign $resultsVar res msg opt
puts "code: $res"
puts "output: $msg"
puts "status dictionary: $opt"
For all that, for an editor like gvim I'd actually expect it to be run in the foreground (which doesn't require anything like as much complexity) since only one of them can really interact with a particular terminal at once.
Your daemon can also call setsid() and setpgrp() to start a new session and to detach from the process group. But these don't help with your problem either.
You will have to do some process management:
#!/usr/bin/tclsh
proc waitpid {pid} {
set rc [catch {exec -- kill -0 $pid}]
while { $rc == 0 } {
set ::waitflag 0
after 100 [list set ::waitflag 1]
vwait ::waitflag
set rc [catch {exec -- kill -0 $pid}]
}
}
set pid [exec ./t1 &]
waitpid $pid
puts "exit tcl"
exit
Edit: Another unreasonable answer
If the forked child process closes the open channels, Tcl will not wait on it.
Test program:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>
int
main (int argc, char *argv [])
{
int pid;
FILE *o;
signal (SIGCHLD, SIG_IGN);
pid = fork ();
if (pid == 0) {
/* should also call setsid() and setpgrp() to daemonize */
printf ("child\n");
fclose (stdout);
fclose (stderr);
sleep (10);
o = fopen ("/dev/tty", "w");
fprintf (o, "child exit\n");
fclose (o);
} else {
printf ("parent\n");
sleep (2);
}
printf ("t1 exit %d\n", pid);
return 0;
}
Test Tcl program:
#!/usr/bin/tclsh
puts [exec ./t1]
puts "exit tcl"
At first you say:
I need some method to recognize the moment when the main process exits, while this process could have spawned another child process, but this child process may be completely detached and I'm not interested what it does.
later on you say:
If the forked child process closes the open channels, Tcl will not wait on it.
these are two contradictory statements. One one hand you are only interested in the parent process and on the other whether or not the child has finished even thought you also state you aren't interested in child processes that have detached. Last I heard forking and closing the childs copies of the parents stdin,stdout and stderr is detaching (i.e.daemonizing the child process ). I wrote this quick program to run the above included simple c program and as expected tcl knows nothing of the child process. I called the compiled version of the program /tmp/compile/chuck. I did not have gvim so I used emacs but as emacs does not generate text I wrap the exec in its own tcl script and exec that. In both cases, the parent process is waited for and eof is detected. When the parent exits the Runner::getData runs and the clean up is evaluated.
#!/bin/sh
exec /opt/usr8.6.3/bin/tclsh8.6 "$0" ${1+"$#"}
namespace eval Runner {
variable close
variable watch
variable lastpid ""
array set close {}
array set watch {}
proc run { program { message "" } } {
variable watch
variable close
variable lastpid
if { $message ne "" } {
set fname "/tmp/[lindex $program 0 ]-[pid].tcl"
set out [ open $fname "w" ]
puts $out "#![info nameofexecutable]"
puts $out " catch { exec $program } err "
puts $out "puts \"\$err\n$message\""
close $out
file attributes $fname -permissions 00777
set fd [ open "|$fname " "r" ]
set close([pid $fd]) "file delete -force $fname "
} else {
set fd [ open "|$program" "r" ]
set close([pid $fd]) "puts \"cleanup\""
}
fconfigure $fd -blocking 0 -buffering none
fileevent $fd readable [ list Runner::getData [ pid $fd ] $fd ]
}
proc getData { pid chan } {
variable watch
variable close
variable lastpid
set data [read $chan]
append watch($pid) "$data"
if {[eof $chan]} {
catch { close $chan }
eval $close($pid) ; # cleanup
set lastpid $pid
}
}
}
Runner::run /tmp/compile/chuck ""
Runner::run emacs " Emacs complete"
while { 1 } {
vwait Runner::lastpid
set p $Runner::lastpid
catch { exec ps -ef | grep chuck } output
puts "program with pid $p just ended"
puts "$Runner::watch($p)"
puts " processes that match chuck "
puts "$output"
}
Output :
note I exited out of emacs after the child reported that it was exiting.
[user1#linuxrocks workspace]$ ./test.tcl
cleanup
program with pid 27667 just ended
child
parent
t1 exit 27670
processes that match chuck avahi 936 1 0 2016 ?
00:04:35 avahi-daemon: running [linuxrocks.local] admin 27992 1 0
19:37 pts/0 00:00:00 /tmp/compile/chuck admin 28006 27988 0
19:37 pts/0 00:00:00 grep chuck
child exit
program with pid 27669 just ended
Emacs complete
Ok, I found the solution after a long discussion here:
https://groups.google.com/forum/#!topic/comp.lang.tcl/rtaTOC95NJ0
The below script demonstrates how this problem can be solved:
#!/usr/bin/tclsh
lassign [chan pipe] input output
chan configure $input -blocking no -buffering line ;# just for a case :)
puts "Running $argv..."
set ret [exec {*}$argv 2>#stderr >#$output]
puts "Waiting for finished process..."
set line [gets $input]
puts "FIRST LINE: $line"
puts "DONE. PROCESSES:"
puts [exec ps -ef | grep [lindex $argv 0]]
puts "EXITING."
The only problem that remains is that there's still no possibility to know that the process has exited, however the next [exec] (in this particular case probably the [exec ps...] command did this) cleans up the zombie (No universal method for that - the best you can do on POSIX systems is [exec /bin/true]). In my case it was enough that I get one line that the parent process had to print, after which I can simply "let it go".
Still, it would be nice if [exec] can return me somehow the PID of the first process and there's a standard [wait] command that can block until the process exits or check its running state (this command is currently available in TclX).
Note that [chan pipe] is available only in Tcl 8.6, you can use [pipe] from TclX alternatively.

No Such Variable When Using While Loop in Expect

I'm attempting to access a variable within a while loop in expect, but I keep getting an error that the variable doesn't exist. The code in question:
#!/usr/bin/expect
spawn ./simulator.sh
set timeout 1
...<extra code>...
# Return the time in seconds from epoch
proc getTime {year month day hour minute} {
set rfc_form ${year}-${month}-${day}T${hour}:${minute}
set time [clock scan $rfc_form]
return $time
}
# Get a handle to the file to store the log output
set fileId [open $filename "a"]
# Get one line at a time
expect -re {.*the number of lines from the debug log file to appear on one page.*}
send "1\r"
# Get the initial time stamp and store the first line
expect -re {^(\d{4})(\d{2})(\d{2})(\d{2})(\d{2})\..*$} {
puts -nonewline $fileId $expect_out(0,string)
set initTime $expect_out(1,string) $expect_out(2,string) $expect_out(3,string) $expect_out(4,string) $expect_out(5,string)
}
send "1\r"
# Iterate over the logs until we get at least 5 minutes worth of log data
while { true } {
expect -re {^(\d{4})(\d{2})(\d{2})(\d{2})(\d{2})\..*$} {
puts -nonewline $fileId $expect_out(0,string)
set currentTime $expect_out(1,string) $expect_out(2,string) $expect_out(3,string) $expect_out(4,string) $expect_out(5,string)
}
# 300 = 5 minutes * 60 seconds
if { $initTime - $currentTime > 300 } break
expect -re {.*enter.*}
send "n\r"
}
...<extra code>...
And the error I get is:
$ ./test.sh
the number of lines from the debug log file to appear on one page1
201505151624.00 721660706 ns | :OCA (027):MAIN (00) | CONTROL |START LINE
enter1
201505151620.00 022625203 ns | :OCA (027):MAIN (00) | CONTROL |com.citrix.cg.task.handlers.ADDeltaSyncHandler:ThreadID:1182, Delta sync on:activedirectory2
entercan't read "initTime": no such variable
while executing
"if { $initTime - $currentTime > 300 } break"
("while" body line 7)
invoked from within
"while { true } {
expect -re {^(\d{4})(\d{2})(\d{2})(\d{2})(\d{2})\..*$} {
puts -nonewline $fileId $expect_out(0,string)
set currentTime $expect_o..."
(file "./test.sh" line 42)
I'm sure I'm doing something incredibly stupid, but I can't figure it out for the life of me. Thanks for the help in advance!
This expect pattern has not matched:
expect -re {^(\d{4})(\d{2})(\d{2})(\d{2})(\d{2})\..*$} {
puts -nonewline $fileId $expect_out(0,string)
set initTime $expect_out(1,string) $expect_out(2,string) $expect_out(3,string) $expect_out(4,string) $expect_out(5,string)
}
You would know if it did match because you would get a syntax error: the set command takes only one or two arguments, and you have given it 6.
Add exp_internal 1 to a line before the spawn command, and expect will show you verbose debugging to let you know how your patterns are or are not matching.
To solve the set syntax error, you probably want
set initTime [getTime $expect_out(1,string) $expect_out(2,string) $expect_out(3,string) $expect_out(4,string) $expect_out(5,string)]
Also, in the if condition, be aware that $initTime will be smaller than $currentTime , so {$initTime - $currentTime > 300} will never be true, so your loop will be infinite.

Spawn multiple telnet with tcl and log the output separately

I'm trying to telnet to multiple servers with spawn & i want to log the output of each in a separate files.
If i use the spawn with 'logfile' then, it is logging into a same file. But i want to have it in different files. How to do this?
Expect's logging support (i.e., what the log_file command controls) doesn't let you set different logging destinations for different spawn IDs. This means that the simplest mechanism for doing what you want is to run each of the expect sessions in a separate process, which shouldn't be too hard provided you don't use the interact command. (The idea of needing to interact with multiple remote sessions at once is a bit strange! By the time you've made it sensible by grafting in something like the screen program, you might as well be using separate expect scripts anyway.)
In the simplest case, your outer script can be just:
foreach host {foo.example.com bar.example.com grill.example.com} {
exec expect myExpectScript.tcl $host >#stdout 2>#stderr &
}
(The >#stdout 2>#stderr & does “run in the background with stdout and stderr connected to the usual overall destinations.)
Things get quite a bit more complicated if you want to automatically hand information about between the expect sessions. I hope that simple is good enough…
I have found something from the link
http://www.highwind.se/?p=116
LogScript.tcl
#!/usr/bin/tclsh8.5
package require Expect
proc log_by_trace {array element op} {
uplevel {
global logfile
set file $logfile($expect_out(spawn_id))
puts -nonewline $file $expect_out(buffer)
}
}
array set spawns {}
array set logfile {}
# Spawn 1
spawn ./p1.sh
set spawns(one) $spawn_id
set logfile($spawn_id) [open "./log1" w]
# Spawn 2
spawn ./p2.sh
set spawns(two) $spawn_id
set logfile($spawn_id) [open "./log2" w]
trace add variable expect_out(buffer) write log_by_trace
proc flush_logs {} {
global expect_out
global spawns
set timeout 1
foreach {alias spawn_id} [array get spawns] {
expect {
-re ".+" {exp_continue -continue_timer}
default { }
}
}
}
exit -onexit flush_logs
set timeout 5
expect {
-i $spawns(one) "P1:2" {puts "Spawn1 got 2"; exp_continue}
-i $spawns(two) "P2:2" {puts "spawn2 got 2"; exp_continue}
}
p1.sh
#!/bin/bash
i=0
while sleep 1; do
echo P1:$i
let i++
done
p2.sh
#!/bin/bash
i=0
while sleep 1; do
echo P2:$i
let i++
done
It is working perfectly :)