Making smaller models from pre-existing redundant models - deep-learning

Sorry for the vague title.
I will just start with an example. Say that I have a pre-existing model that can classify dogs, cats and humans. However, all I need is a model that can classify between dogs and cats (Humans are not needed). The pre-existing model is heavy and redundant, so I want to make a smaller, faster model that can just do the job needed.
What approaches exist?
I thought of utilizing knowledge distillation (using the previous model as a teacher and the new model as the student) and training a whole new model.

First, prune the teacher model to have a smaller version to be used as a student in distillation. A simple regime such as magnitude-based pruning will suffice.
For distillation, as your output vectors will not match anymore (the student is 2 dimensional and teacher is 3 dimensional, you will have to take this into account and only calculate this distillation loss based on the overlapping dimensions. An alternative is layer-wise distillation in which the output vectors are irrelevant and the distillation loss is calculated based on the difference between intermediate layers of the teacher and student. In both cases, total loss may include a difference between student output and label, in addition to student output and teacher output.
It is possible for a simple task like this that just basic transfer learning would suffice after pruning - that is just to replace the 3d output vector with a 2d output vector and continue training.

Related

How to reveal relations between number of words and target with self-attention based models?

Transformers can handle variable length input, but what if the number of words might correlate with the target? Let's say we want to perform a sentiment analysis for some reviews where the longer reviews are more probable to be bad. How can the model harness this knowledge? Of course a simple solution could be to add this count as a feature after the self-attention layer. However, this hand-crafted-like approach wouldn't reveal more complex relations, for example if there is a high number of word X, it correlates with target 1, except if there is also high number of word Y, in which case the target tends to be 0.
How could this information be included using deep learning? Paper recommendations in the topic are also well appreciated.

What Algo to use to classify my data to 3 classes

I'm looking for a way to differentiate between 3 classes(classification problem) for each OBJECT to classify.
I have a large dataset(millions of lines). There are 2 features, each have 100 values(scaled to 0-1).
Each line refers to one sample of a specific Object(Object_id, 100 columns of my first feature, 100 of my second feature).
Each object(that has to be classified to either 3 classes) have at least 100 samples(1 sample is 1 line)
Unfortunately Classe 3 counts only 1/10 compared to 1 and 2(each object of classe 3 have around 500 samples, however classe 1 and 2 objects have around 2000 and more).
In order to do the classification, I need to take a bach of samples for each object(for exmaple 20, 50, or 100).
I dont know what algo suites better for my case, I'm new to deep learning so bear with me please
Let's break this down to two main questions: how to handle unbalanced datasets and which model to use.
Unbalanced datasets
Most machine learning algorithms are sensitive to some degree on unbalanced datasets. This is a huge challenge for Machine Learning in fields like medical diagnostics or seismology, where you have 98% "normal" readings and 2% "event" readings. There is no silver bullet to this problem. Some algorithms are more resilient to an unbalanced dataset, and some that deliberately unbalance their datasets to encourage a strong model (see bagging), and there are options to augment your data by introducing cloned data with statistical noise. However, your easiest and most effective approach is to decimate your dataset to make it balanced.
You have a class split of 2000|2000|500 datapoints. Randomly sample 500 datapoints from each of the first two classes so you have a balanced 500|500|500 dataset. It is important to randomly sample, instead of simply taking the first 500 as you want a representative sample of the class population. see the numpy.random module for how to select your datapoints.
Model selection
Although Deep Learning is portrayed as the be-all and end-all for machine learning, it represents a significant amount of time and cost to prepare, train and monitor. A typical approach to any new problem is to try some "baseline" shallow learning models. Often you'll see the following scenarios:
Your baseline models fail to train.
Your baseline model trains and fits moderately
Your baseline model trains and fits closely
In the first scenario, your deep learning model is unlikely to train either. In the third scenario there is no need to build a deep learning model when a simpler algorithm can solve it. Scenario 2 is your candidate fro deep learning.
So what models could you use?
Well, we know that it's a supervised problem, that we have a good number of samples, and that we are looking to classify. Your best bet for this kind of question is a Random Forests model. There is a good simple implementation in scikit-learn and hundreds of tutorials.
Alternatively, if you're looking at class fit through clustering, K-means ++ models (and co), or even Gaussian Mixture Models are a good place to start (again, see scikit learn's sklearn.clustering and sklearn.mixture)
If it fits well, then your work is done. If it fits moderately, think about deep learning. If it fails to fit, get add more features (and more diverse features) to your dataset.

Computation consideration with different Caffe's network topology (difference in number of output)

I would like to use one of Caffe's reference model i.e. bvlc_reference_caffenet. I found that my target class i.e. person is one of the classes included in the ILSVRC dataset that has been trained for the model. As my goal is to classify whether a test image contains a person or not, I may achieve this by the following:
Use inference directly with 1000 number of output. This doesn't
require training/learning.
Change the network topology a little bit with the final FC layer's number of output (num_output) is set to 2 (instead of 1000). Retrain it as a binary classification problem.
My concern is about computational effort at deployment/prediction phase (testing). The latter looks more expensive computationally than the former. This is because during prediction phase it needs to compute those 1000 output possibilities to find the one with the highest score. What I'm not sure is that, it could be the case that there's a heuristic (which I'm not aware of) that simplifies the computation.
Can somebody please help cross check my understanding on this.

How does SPSS assign factor scores for cases where underlying variables were pairwise deleted?

Here's a simplified example of what I'm trying to figure out from a report. All analyses are being run in SPSS, which I don't have and don't use (my experience is with SAS and R).
They were running a regression to predict overall meal satisfaction from food type ordered, self-reported food flavor, and self-reported food texture.
But food flavor and texture are highly correlated, so they conducted a factor analysis, found food flavor and texture load on one factor, and used the factor scores in the regression.
However, about 40% of respondents don't have responses on self-reported food texture, so they used pairwise deletion while making the factors.
My question is when SPSS calculates the factor scores and outputs them as new variables in the data set, what does it do with people who had an input for a factor that was pairwise deleted?
How does it calculate (if it calculates it at all) factor scores for those people who had a response pairwise deleted during the creation of the factors and who therefore have missing data for one of the variables?
Factor scores are a linear combination of their scaled inputs. That is, given normalized variables X1, ..., Xn, we have the following (where LaTeX formatting isn't supported and the L's indicate the loadings)
f = \sum_{i=1}^n L_i X_i
In your case n = 2. Now suppose one of the X_i is missing. How do you take a sum involving a missing value? Clearly, you cannot... unless you impute it.
I don't know what the analyst who created your report did. I suggest you ask them.

Is It Efficient and Scalable for a Neural Network to Rely on Weights that Require Database Interaction?

I'm a high school senior interested in computer science and I have been programming for almost nine years now. I've recently become interested in machine learning and I have decided to implement a neural network. I haven't begun to code it yet and have been in the designing stage for a while now. The objective of the program is to analyze a student's paper, along with some other information, and then predict what grade the student will receive, much like PaperRater. However, I plan to make it far more personal than PaperRater.
The program has four inputs, one is the student's paper, the second is the student's id (i.e, primary key), third is the teacher's id, and finally the course id. I am implementing this on a website where registered, verified users alone can submit their papers for grading. The contents of the paper are going to be weighed in relation to the relationship between the teacher and student and in relation to the course difficulty. The network adapts to the teacher's grading habits for certain classes, the relationship between the teacher and student (e.g., if a teacher dislikes a student you might expect to see a drop in the student's grades), and the course-level (e.g., a teacher shouldn't grade a freshman's paper as harshly as a senior's paper).
However, this approach poses some considerable problems. There is an inherent limit imposed, where the numbers of students, teachers and courses prove to be too much and everything blows up! That's because there is no magic number which can account for every combination of student, teacher and course.
So, I've concluded that each teacher, student, and course must have an individual (albeit arbitrary) weight associated with them, not present in the Neural Network itself. The teacher's weight would describe her grading difficulty, and the student's weight would describe her ability as a writer. The weight of the course would describe the difficulty of the course. Of course, as more and more data is aggregated, the weights should adapt to become more accurate representations.
I realize that there is a relation between teachers and students, teachers and courses, and students and courses; therefore, I plan to make three respective hidden layers which sum the weights of its inputs and apply an activation function. How could I store the weights associated with each teacher, student and course, though?
I have considered storing it in their respective tables, but I don't know how well that would scale (or for that matter, if it would work). I also considered storing it in a file and calling it like that, but I'm sure that would be even worse than storing it in a database.
So the main question I have is: is it (objectively) efficient, in terms of space and computational complexity, and scalable, to store and manage separate, individual weights for each possible element of certain inputs in a SQL database outside of the neural network, if there are a finite (not necessarily small) amount of possible choices for such inputs, and still receive a reasonable output?
Regardless, I would like an explanation as to how come. I believe it would be just fine, but I can't justify it myself and so I'm asking for help. Thanks in advance!
(P.S.: If you realize any problems with my approach not covered in the scope of this question, or have general advice, please include it as an addendum to your answer or please message me).