Mathematica has a function Orthogonalization, which, when given a set of vectors, orthogonalizes them.
Is some similar built in routine available in GNU Octave?
Of course, I can set up for loops to orthogonalize a set of vectors using Gram-Schmidt method, but I was looking for a built in routine.
I guess you can try qr to orthogonalize a set of vectors.
Given a set of vectors
v1 = [3,4,2];
v2 = [2,5,2];
v3 = [1,2,6];
we bind all vectors by columns to form a matrix A, and then perform qr, e.g.,
A = [v1;v2;v3]';
[Q,R] = qr(A);
then we will see
Q =
-0.557086 0.787070 -0.264906
-0.742781 -0.614899 -0.264906
-0.371391 0.049192 0.927173
R =
-5.38516 -5.57086 -4.27099
0.00000 -1.40197 -0.14758
0.00000 0.00000 4.76832
where the columns in Q are the orthogonal vectors.
Related
I'm currently trying to solve Pendulum-v0 from the openAi gym environment which has a continuous action space. As a result, I need to use a Normal Distribution to sample my actions. What I don't understand is the dimension of the log_prob when using it :
import torch
from torch.distributions import Normal
means = torch.tensor([[0.0538],
[0.0651]])
stds = torch.tensor([[0.7865],
[0.7792]])
dist = Normal(means, stds)
a = torch.tensor([1.2,3.4])
d = dist.log_prob(a)
print(d.size())
I was expecting a tensor of size 2 (one log_prob for each actions) but it output a tensor of size(2,2).
However, when using a Categorical distribution for discrete environment the log_prob has the expected size:
logits = torch.tensor([[-0.0657, -0.0949],
[-0.0586, -0.1007]])
dist = Categorical(logits = logits)
a = torch.tensor([1, 1])
print(dist.log_prob(a).size())
give me a tensor a size(2).
Why is the log_prob for Normal distribution of a different size ?
If one takes a look in the source code of torch.distributions.Normal and finds the definition of the log_prob(value) function, one can see that the main part of the calculation is:
return -((value - self.loc) ** 2) / (2 * var) - some other part
where value is a variable containing values for which you want to calculate the log probability (in your case, a), self.loc is the mean of the distribution (in you case, means) and var is the variance, that is, the square of the standard deviation (in your case, stds**2). One can see that this is indeed the logarithm of the probability density function of the normal distribution, minus some constants and logarithm of the standard deviation that I don't write above.
In the first example, you define means and stds to be column vectors, while the values to be a row vector
means = torch.tensor([[0.0538],
[0.0651]])
stds = torch.tensor([[0.7865],
[0.7792]])
a = torch.tensor([1.2,3.4])
But subtracting a row vector from a column vector, that the code does in value - self.loc in Python gives a matrix (try!), thus the result you obtain is a value of log_prob for each of your two defined distribution and for each of the variables in a.
If you want to obtain a log_prob without the cross terms, then define the variables consistently, i.e., either
means = torch.tensor([[0.0538],
[0.0651]])
stds = torch.tensor([[0.7865],
[0.7792]])
a = torch.tensor([[1.2],[3.4]])
or
means = torch.tensor([0.0538,
0.0651])
stds = torch.tensor([0.7865,
0.7792])
a = torch.tensor([1.2,3.4])
This is how you do in your second example, which is why you obtain the result you expected.
I need to solve this differential equation using Runge-Kytta 4(5) on Scilab:
The initial conditions are above. The interval and the h-step are:
I don't need to implement Runge-Kutta. I just need to solve this and plot the result on the plane:
I tried to follow these instructions on the official "Scilab Help":
https://x-engineer.org/graduate-engineering/programming-languages/scilab/solve-second-order-ordinary-differential-equation-ode-scilab/
The suggested code is:
// Import the diagram and set the ending time
loadScicos();
loadXcosLibs();
importXcosDiagram("SCI/modules/xcos/examples/solvers/ODE_Example.zcos");
scs_m.props.tf = 5000;
// Select the solver Runge-Kutta and set the precision
scs_m.props.tol(6) = 6;
scs_m.props.tol(7) = 10^-2;
// Start the timer, launch the simulation and display time
tic();
try xcos_simulate(scs_m, 4); catch disp(lasterror()); end
t = toc();
disp(t, "Time for Runge-Kutta:");
However, it is not clear for me how I can change this for the specific differential equation that I showed above. I have a very basic knowledge of Scilab.
The final plot should be something like the picture bellow, an ellipse:
Just to provide some mathematical context, this is the differential equation that describes the pendulum problem.
Could someone help me, please?
=========
UPDATE
Based on #luizpauloml comments, I am updating this post.
I need to convert the second-order ODE into a system of first-order ODEs and then I need to write a function to represent such system.
So, I know how to do this on pen and paper. Hence, using z as a variable:
OK, but how do I write a normal script?
The Xcos is quite disposable. I only kept it because I was trying to mimic the example on the official Scilab page.
To solve this, you need to use ode(), which can employ many methods, Runge-Kutta included. First, you need to define a function to represent the system of ODEs, and Step 1 in the link you provided shows you what to do:
function z = f(t,y)
//f(t,z) represents the sysmte of ODEs:
// -the first argument should always be the independe variable
// -the second argument should always be the dependent variables
// -it may have more than two arguments
// -y is a vector 2x1: y(1) = theta, y(2) = theta'
// -z is a vector 2x1: z(1) = z , z(2) = z'
z(1) = y(2) //first equation: z = theta'
z(2) = 10*sin(y(1)) //second equation: z' = 10*sin(theta)
endfunction
Notice that even if t (the independent variable) does not explicitly appear in your system of ODEs, it still needs to be an argument of f(). Now you just use ode(), setting the flag 'rk' or 'rkf' to use either one of the available Runge-Kutta methods:
ts = linspace(0,3,200);
theta0 = %pi/4;
dtheta0 = 0;
y0 = [theta0; dtheta0];
t0 = 0;
thetas = ode('rk',y0, t0, ts, f); //the output have the same order
//as the argument `y` of f()
scf(1); clf();
plot2d(thetas(2,:),thetas(1,:),-5);
xtitle('Phase portrait', 'theta''(t)','theta(t)');
xgrid();
The output:
I am trying to compute the maximum value of the solution of a system with two ODEs using Octave. I have firstly solved the system itself:
function xdot = f (x,t)
a1=0.00875;
a2=0.075;
b1=7.5;
b2=2.5;
d1=0.0001;
d2=0.0001;
g=4*10^(-8);
K1=5000;
K2=2500;
n=2;
m=2;
xdot = zeros(2,1);
xdot(1) = a1+b1*x(1)^n/(K1^n+x(1)^n)-g*x(1)*x(2)-d1*x(1);
xdot(2) = a2+b2*x(1)^m/(K2^m+x(1)^m)-d2*x(2);
endfunction
t = linspace(0, 5000, 200)';
x0 = [1000; 1000];
x = lsode ("f", x0, t);
set term dumb;
plot(t,x);
But now I do not know how to compute the maximum value of the two functions (numerical ones) obtained as solutions of the system. I have searched in the Internet but I haven't found what I want... I only have found the function fminbnd for the minimum of a function on an interval...
Is it possible to compute the maximum value of a numeric function with Octave?
Generally, if you know how to find the minimum of a function, you also know how to find its maximum: just look for the minimum of -f.
However, fminbnd is designed for functions that can be evaluated at any given point. What you have is just a vector of 200 points. In principle, you could use interpolation to get a function and then maximize that. But this is not really needed, because all the information you have is in that matrix x anyway, so it makes sense to just take the maximum value there. Like this:
[x1m, i1] = max(x(:,1));
[x2m, i2] = max(x(:,2));
disp(sprintf('Maximum of x1 is %f attained at t = %f', x1m, t(i1)));
disp(sprintf('Maximum of x1 is %f attained at t = %f', x2m, t(i2)));
I'm trying to compute the Fourier coefficients for a waveform using MATLAB. The coefficients can be computed using the following formulas:
T is chosen to be 1 which gives omega = 2pi.
However I'm having issues performing the integrals. The functions are are triangle wave (Which can be generated using sawtooth(t,0.5) if I'm not mistaking) as well as a square wave.
I've tried with the following code (For the triangle wave):
function [ a0,am,bm ] = test( numTerms )
b_m = zeros(1,numTerms);
w=2*pi;
for i = 1:numTerms
f1 = #(t) sawtooth(t,0.5).*cos(i*w*t);
f2 = #(t) sawtooth(t,0.5).*sin(i*w*t);
am(i) = 2*quad(f1,0,1);
bm(i) = 2*quad(f2,0,1);
end
end
However it's not getting anywhere near the values I need. The b_m coefficients are given for a
triangle wave and are supposed to be 1/m^2 and -1/m^2 when m is odd alternating beginning with the positive term.
The major issue for me is that I don't quite understand how integrals work in MATLAB and I'm not sure whether or not the approach I've chosen works.
Edit:
To clairify, this is the form that I'm looking to write the function on when the coefficients have been determined:
Here's an attempt using fft:
function [ a0,am,bm ] = test( numTerms )
T=2*pi;
w=1;
t = [0:0.1:2];
f = fft(sawtooth(t,0.5));
am = real(f);
bm = imag(f);
func = num2str(f(1));
for i = 1:numTerms
func = strcat(func,'+',num2str(am(i)),'*cos(',num2str(i*w),'*t)','+',num2str(bm(i)),'*sin(',num2str(i*w),'*t)');
end
y = inline(func);
plot(t,y(t));
end
Looks to me that your problem is what sawtooth returns the mathworks documentation says that:
sawtooth(t,width) generates a modified triangle wave where width, a scalar parameter between 0 and 1, determines the point between 0 and 2π at which the maximum occurs. The function increases from -1 to 1 on the interval 0 to 2πwidth, then decreases linearly from 1 to -1 on the interval 2πwidth to 2π. Thus a parameter of 0.5 specifies a standard triangle wave, symmetric about time instant π with peak-to-peak amplitude of 1. sawtooth(t,1) is equivalent to sawtooth(t).
So I'm guessing that's part of your problem.
After you responded I looked into it some more. Looks to me like it's the quad function; not very accurate! I recast the problem like this:
function [ a0,am,bm ] = sotest( t, numTerms )
bm = zeros(1,numTerms);
am = zeros(1,numTerms);
% 2L = 1
L = 0.5;
for ii = 1:numTerms
am(ii) = (1/L)*quadl(#(x) aCos(x,ii,L),0,2*L);
bm(ii) = (1/L)*quadl(#(x) aSin(x,ii,L),0,2*L);
end
ii = 0;
a0 = (1/L)*trapz( t, t.*cos((ii*pi*t)/L) );
% now let's test it
y = ones(size(t))*(a0/2);
for ii=1:numTerms
y = y + am(ii)*cos(ii*2*pi*t);
y = y + bm(ii)*sin(ii*2*pi*t);
end
figure; plot( t, y);
end
function a = aCos(t,n,L)
a = t.*cos((n*pi*t)/L);
end
function b = aSin(t,n,L)
b = t.*sin((n*pi*t)/L);
end
And then I called it like:
[ a0,am,bm ] = sotest( t, 100 );
and I got:
Sweetness!!!
All I really changed was from quad to quadl. I figured that out by using trapz which worked great until the time vector I was using didn't have enough resolution, which led me to believe it was a numerical issue rather than something fundamental. Hope this helps!
To troubleshoot your code I would plot the functions you are using and investigate, how the quad function samples them. You might be undersampling them, so make sure your minimum step size is smaller than the period of the function by at least factor 10.
I would suggest using the FFTs that are built-in to Matlab. Not only is the FFT the most efficient method to compute a spectrum (it is n*log(n) dependent on the length n of the array, whereas the integral in n^2 dependent), it will also give you automatically the frequency points that are supported by your (equally spaced) time data. If you compute the integral yourself (might be needed if datapoints are not equally spaced), you might calculate frequency data that are not resolved (closer spacing than 1/over the spacing in time, i.e. beyond the 'Fourier limit').
How to find integrals from limits -infinity to +infinity in SCILAB ? ( Expression to be integrated are not directly integratable )
Change the variable of integration from x=(-inf,inf) to z=atan(x)
x=tan(z),
dx/dz = 1/(cos(z))^2
In the new variable z, the integration limits are from -%pi/2+eps to +%pi/2-eps, where eps is a very small positive number (else you will not be able to divide by the cos(z)) and
integral f(x) dx =
= integral f(x(z)) d(x(z))
= integral f(z) dx/dz dz
For example,
function y=Gaussian(x); y=exp(-x^2/2)/sqrt(2*%pi); endfunction;
intg(-10,10,Gaussian)
The same integration result is achieved with
function y=Gmodified(z); x=tan(z); y=Gaussian(x)/(cos(z))^2; endfunction;
intg(atan(-10),atan(10),Gmodified)
Interestingly, Scilab will take the above integral even for
intg(-%pi/2,%pi/2,Gmodified)
but this is only because Scilab evaluates 1/cos(%pi/2) as 1.633D+16 rather than infinity.