Is it possible to further optimize this MySQL query? - mysql

I was running a query of this kind of query:
SELECT
-- fields
FROM
table1 JOIN table2 ON (table1.c1 = table.c1 OR table1.c2 = table2.c2)
WHERE
-- conditions
But the OR made it very slow so i split it into 2 queries:
SELECT
-- fields
FROM
table1 JOIN table2 ON table1.c1 = table.c1
WHERE
-- conditions
UNION
SELECT
-- fields
FROM
table1 JOIN table2 ON table1.c2 = table.c2
WHERE
-- conditions
Which works much better but now i am going though the tables twice so i was wondering if there was any further optimizations for instance getting set of entries that satisfies the condition (table1.c1 = table.c1 OR table1.c2 = table2.c2) and then query on it. That would bring me back to the first thing i was doing but maybe there is another solution i don't have in mind. So is there anything more to do with it or is it already optimal?

Splitting the query into two separate ones is usually better in MySQL since it rarely uses "Index OR" operation (Index Merge in MySQL lingo).
There are few items I would concentrate for further optimization, all related to indexing:
1. Filter the rows faster
The predicate in the WHERE clause should be optimized to retrieve the fewer number of rows. And, they should be analized in terms of selectivity to create indexes that can produce the data with the fewest filtering as possible (less reads).
2. Join access
Retrieving related rows should be optimized as well. According to selectivity you need to decide which table is more selective and use it as a driving table, and consider the other one as the nested loop table. Now, for the latter, you should create an index that will retrieve rows in an optimal way.
3. Covering Indexes
Last but not least, if your query is still slow, there's one more thing you can do: use covering indexes. That is, expand your indexes to include all the rows from the driving and/or secondary tables in them. This way the InnoDB engine won't need to read two indexes per table, but a single one.

Test
SELECT
-- fields
FROM
table1 JOIN table2 ON table1.c1 = table2.c1
WHERE
-- conditions
UNION ALL
SELECT
-- fields
FROM
table1 JOIN table2 ON table1.c2 = table2.c2
WHERE
-- conditions
/* add one more condition which eliminates the rows selected by 1st subquery */
AND table1.c1 != table2.c1
Copied from the comments:
Nico Haase > What do you mean by "test"?
OP shows query patterns only. So I cannot predict does the technique is effective or not, and I suggest OP to test my variant on his structure and data array.
Nico Haase > what you've changed
I have added one more condition to 2nd subquery - see added comment in the code.
Nico Haase > and why?
This replaces UNION DISTINCT with UNION ALL and eliminates combined rowset sorting for duplicates remove.

Related

Should I create 2 indexes for the same column to speed up a join?

I am new to database index and I've just read about what an index is, differences between clustered and non clustered and what composite index is.
So for a inner join query like this:
SELECT columnA
FROM table1
INNER JOIN table2
ON table1.columnA= table2.columnA;
In order to speed up the join, should I create 2 indexes, one for table1.columnA and the other for table2.columnA , or just creating 1 index for table1 or table2?
One is good enough? I don't get it, for example, if I select some data from table2 first and based on the result to join on columnA, then I am looping through results one by one from table2, then an index from table2.columnA is totally useless here, because I don't need to find anything in table2 now. So I am needing a index for table1.columnA.
And vice versa, I need a table2.columnA if I select some results from table1 first and want to join on columnA.
Well, I don't know how in reality "select xxxx first then join based on ..." looks like, but that scenario just came into my mind. It would be much appreciated if someone could also give a simple example.
One index is sufficient, but the question is which one?
It depends on how the MySQL optimizer decides to order the tables in the join.
For an inner join, the results are the same for table1 INNER JOIN table2 versus table2 INNER JOIN table1, so the optimizer may choose to change the order. It is not constrained to join the tables in the order you specified them in your query.
The difference from an indexing perspective is whether it will first loop over rows of table1, and do lookups to find matching rows in table2, or vice-versa: loop over rows of table2 and do lookups to find rows in table1.
MySQL does joins as "nested loops". It's as if you had written code in your favorite language like this:
foreach row in table1 {
look up rows in table2 matching table1.column_name
}
This lookup will make use of the index in table2. An index in table1 is not relevant to this example, since your query is scanning every row of table1 anyway.
How can you tell which table order is used? You can use EXPLAIN. It will show you a row for each table reference in the query, and it will present them in the join order.
Keep in mind the presence of an index in either table may influence the optimizer's choice of how to order the tables. It will try to pick the table order that results in the least expensive query.
So maybe it doesn't matter which table you add the index to, because whichever one you put the index on will become the second table in the join order, because it makes it more efficient to do the lookup that way. Use EXPLAIN to find out.
90% of the time in a properly designed relational database, one of the two columns you join together is a primary key, and so should have a clustered index built for it.
So as long as you're in that case, you don't need to do anything at all. The only reason to add additional non-clustered indices is if you're also further filtering the join with a where clause at the end of your statement, you need to make sure both the join columns and the filtered columns are in a correct index together (ie correct sort order, etc).

Does adding join condition on two different tables (excluding the table to be joined) slows down query and performance

I have 3 tables in mySQL => table1, table2 and table3 and the data in all three tables is large (>100k)
My join condition is :
select * from table1 t1
join table2 t2 on t1.col1 = t2.col1
join table3 t3 on t3.col2 = t2.col2 and t3.col3 = t1.col3
This query renders result very slow and according to me the issue is in the second join condition as if I remove the second condition, the query renders result instantly.
Can anyone please explain the reason of the query being slow?
Thanks in advance.
Do you have these indexes?
table2: (col1)
table3: (col2, col3) -- in either order
Another tip: Don't use * (as in SELECT *) unless you really need all the columns. It prevents certain optimizations. If you want to discuss this further, please provide the real query and SHOW CREATE TABLE for each table.
If any of the columns used for joining are not the same datatype, character set, and collation, then indexes may not be useful.
Please provide EXPLAIN SELECT ...; it will give some clues we can discuss.
How many rows in the resultset? Sounds like over 100K? If so, then perhaps the network transfer time is the real slowdown?
Since the second join is over both tables (two joins) it creates more checks on evaluation. This is creating a triangle rather than a long joined line.
Also, since all three tables have ~100K lines, even with clustered index on the given columns, it's bound to have a performance hit, also due to all columns being retrieved.
At least, have the select statement as T1.col1, T1.col2...,T2.col1... and so on.
Also have distinct indexes on all columns used in join condition.
More so, do you really want a huge join without a where clause? Try adding restrictive conditions for each table and see the magic as it first filters out the available set of results from each table (100k may become 10k) and then the join is attempted.
Also check SQL Profiler output to see if a TABLE SCAN is being used (most probably yes), if so, having an INDEX SCAN should improve the situation.

Is using correlated subquery better than join? (indexing perspective)

I read somewhere something like this:
Indexes will be used per queries.
So as you know, this is two queries:
SELECT m1.*, (SELECT 1 FROM mytable2 m2 WHERE col2 = ?) AS sth
FROM mytable1 m1 WHERE col1 = ?
Well query above can use two indexes: mytable1(col1), mytable2(col2). Because of being two separated queries.
Now take a look at this one: (the same as previous query, just uses join instead of subquery)
SELECT m1.*, m2.1 AS sth
FROM mytable1 m1
JOIN mytable2 m2 ON m2.col2 = ?
WHERE m1.col1 = ?
But this ^ query, is just one query. So it can use just one index. Is my understanding right? So using subquery is better for indexing, right?
But this ^ query, is just one query. So it can use just one index. Is my understanding right? So using subquery is better for indexing, right?
You misunderstand. MySQL can use one index per table reference.
So in this case, it can use both indexes: mytable1(col1), mytable2(col2).
You can even use two different indexes from the same table, if you do a self-join or a UNION or a subquery. Each time you reference the table counts as a separate table reference.
SELECT m1.*, m2.1 AS sth
FROM mytable1 m1
JOIN mytable2 m2 ON m2.col2 = ?
WHERE m1.col1 = ?
Regardless of indexing, this is a strange query. You have no condition that relates mytable1 to mytable2. So you're doing a Cartesian product between the two tables. One or both table may be selecting a single row, depending on your conditions for col1 and col2. But it's still a Cartesian product, so if the conditions on both tables return multiple rows, you'll get result set with a lot of repetition.
This is too long for a comment.
The two queries are different, in multiple respects:
The first returns all rows in mytable1 that match the where condition, regardless of whether there is a match in the second table. The second only returns rows that match.
The first fails with an error if the subquery returns more than one row. The second returns multiple rows that match.
As a consequence, the first could return NULL for sth, the second cannot.
My advice is to first learn to write the query that meets your functional needs. Then worry about performance.
As for your question, both correlated subqueries and joins can make use of an index. The idea that correlated subqueries are always worse than joins is an old-wives' tale (no offense to old wives) that should be forgotten.
Generally speaking, it all depends. At the end of the day, SQL Server will create execution plans, and depending on how it interprets your query, one might be better than the other. Having that said, generally, join is better.

SQL query takes too much time (3 joins)

I'm facing an issue with an SQL Query. I'm developing a php website, and to avoid making too much queries, I prefer to make a big one looking like :
select m.*, cj.*, cjb.*, me.pseudo as pseudo_acheteur
from mercato m
JOIN cartes_joueur cj
ON m.ID_carte = cj.ID_carte_joueur
JOIN cartes_joueur_base cjb
ON cj.ID_carte_joueur_base = cjb.ID_carte_joueur_base
JOIN membres me
ON me.ID_membre = cj.ID_membre
where not exists (select * from mercato_encheres me where me.ID_mercato = m.ID_mercato)
and cj.ID_membre = 2
and m.status <> 'cancelled'
ORDER BY total_carac desc, cj.level desc, cjb.nom_carte asc
This should return all cards sold by the member without any bet on it. In the result, I need all the information to display them.
Here is the approximate rows in each table :
mercato : 1200
cartes_joueur : 800 000
carte_joueur_base : 62
membres : 2000
mercato_enchere : 15 000
I tried to reduce them (in dev environment) by deleting old data; but the query still needs 10~15 seconds to execute (which is way too long on a website )
Thanks for your help.
Let's take a look.
The use of * in SELECT clauses is harmful to query performance. Why? It's wasteful. It needlessly adds to the volume of data the server must process, and in the case of JOINs, can force the processing of columns with duplicate values. If you possibly can do so, try to enumerate the columns you need.
You may not have useful indexes on your tables for accelerating this. We can't tell. Please notice that MySQL can't exploit multiple indexes in a single query, so to make a query fast you often need a well-chosen compound index. I suggest you try defining the index (ID_membre, ID_carte_jouer, ID_carte_joueur_base) on your cartes_joueur table. Why? Your query matches for equality on the first of those columns, and then uses the second and third column in ON conditions.
I have often found that writing a query with the largest table (most rows) first helps me think clearly about optimizing. In your case your largest table is cartes_jouer and you are choosing just one ID_membre value from that table. Your clearest path to optimization is the knowledge that you only need to examine approximately 400 rows from that table, not 800 000. An appropriate compound index will make that possible, and it's easiest to imagine that index's columns if the table comes first in your query.
You have a correlated subquery -- this one.
where not exists (select *
from mercato_encheres me
where me.ID_mercato = m.ID_mercato)
MySQL's query planner can be stupidly literal-minded when it sees this, running it thousands of times. In your case it's even worse: it's got SELECT * in it: see point 1 above.
It should be refactored to use the LEFT JOIN ... IS NULL pattern. Here's how that goes.
select whatever
from mercato m
JOIN ...
JOIN ...
LEFT JOIN mercato_encheres mench ON mench.ID_mercato = m.ID_mercato
WHERE mench.ID_mercato IS NULL
and ...
ORDER BY ...
Explanation: The use of LEFT JOIN rather than ordinary inner JOIN allows rows from the mercato table to be preserved in the output even when the ON condition does not match them to tables in the mercato_encheres table. The mismatching rows get NULL values for the second table. The mench.ID_mercato IS NULL condition in the WHERE clause then selects only the mismatching rows.

MySQL Join clause vs WHERE clause

What's the difference in a clause done the two following ways?
SELECT * FROM table1 INNER JOIN table2 ON (
table2.col1 = table1.col2 AND
table2.member_id = 4
)
I've compared them both with basic queries and EXPLAIN EXTENDED and don't see a difference. I'm wondering if someone here has discovered a difference in a more complex/processing intensive envornment.
SELECT * FROM table1 INNER JOIN table2 ON (
table2.col1 = table1.col2
)
WHERE table2.member_id = 4
With an INNER join the two approaches give identical results and should produce the same query plan.
However there is a semantic difference between a JOIN (which describes a relationship between two tables) and a WHERE clause (which removes rows from the result set). This semantic difference should tell you which one to use. While it makes no difference to the result or to the performance, choosing the right syntax will help other readers of your code understand it more quickly.
Note that there can be a difference if you use an outer join instead of an inner join. For example, if you change INNER to LEFT and the join condition fails you would still get a row if you used the first method but it would be filtered away if you used the second method (because NULL is not equal to 4).
If you are trying to optimize and know your data, by adding the clause "STRAIGHT_JOIN" can tremendously improve performance. You have an inner join ON... So, just to confirm, you want only records where table1 and table2 are joined, but only for table 2 member ID = some value.. in this case 4.
I would change the query to have table 2 as the primary table of the select as it has an explicit "member_id" that could be optimized by an index to limit rows, then joining to table 1 like
select STRAIGHT_JOIN
t1.*
from
table2 t2,
table1 t1
where
t2.member_id = 4
and t2.col1 = t1.col2
So the query would pre-qualify only the member_id = 4 records, then match between table 1 and 2. So if table 2 had 50,000 records and table 1 had 400,000 records, having table2 listed first will be processed first. Limiting the ID = 4 even less, and even less when joined to table1.
I know for a fact the straight_join works as I've implemented it many times dealing with gov't data of 14+ million records linking to over 15 lookup tables where the engine got confused trying to think for me on the critical table. One such query was taking 24+ hours before hanging... Adding the "STRAIGHT_JOIN" and prioritizing what the "primary" table was in the query dropped it to a final correct result set in under 2 hours.
There's not really much of a difference in the situation you describe; in a situation with multiple complex joins, my understanding is that the first is somewhat preferential, as it will reduce the complexity somewhat; that said, it's going to be a small difference. Overall, you shouldn't notice much of a difference in most if not all situations.
With an inner join, it makes almost* no difference; if you switch to outer join, all the difference in the world.
*I say "almost" because optimizers are quirky beasts and it isn't impossible that under some circumstances, it might do a better job optimizing the former or the latter. Do not attempt to take advantage of this behavior.