I am making an image segmentation transfer learning project using Pytorch. I am using the weights of this pre-trained model and class UNet3D.
https://github.com/MrGiovanni/ModelsGenesis
When I run the following codes I get this error at the line which MSELoss is called: "AttributeError: 'DataParallel' object has no attribute 'size' ".
When I delete the first line I get a similar error: "AttributeError: 'UNet3D' object has no attribute 'size'
"
How can I convert DataParallel or UNet3D class to an object which MSELoss can use? I do not need DataParallel for now. I need to run the UNet3D() class for transfer learning.
model = nn.DataParallel(model, device_ids = [i for i in range(torch.cuda.device_count())])
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), conf.lr, momentum=0.9, weight_decay=0.0, nesterov=False)
scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
initial_epoch=10
for epoch in range(initial_epoch, conf.nb_epoch):
scheduler.step(epoch)
model.train()
for batch_ndx, (x,y) in enumerate(train_loader):
x, y = x.float().to(device), y.float().to(device)
pred = model
loss = criterion(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-46-20d1943b3498> in <module>
25 x, y = x.float().to(device), y.float().to(device)
26 pred = model
---> 27 loss = criterion(pred, y)
28 optimizer.zero_grad()
29 loss.backward()
/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
548 result = self._slow_forward(*input, **kwargs)
549 else:
--> 550 result = self.forward(*input, **kwargs)
551 for hook in self._forward_hooks.values():
552 hook_result = hook(self, input, result)
/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/loss.py in forward(self, input, target)
430
431 def forward(self, input, target):
--> 432 return F.mse_loss(input, target, reduction=self.reduction)
433
434
/opt/anaconda3/lib/python3.7/site-packages/torch/nn/functional.py in mse_loss(input, target, size_average, reduce, reduction)
2528 mse_loss, tens_ops, input, target, size_average=size_average, reduce=reduce,
2529 reduction=reduction)
-> 2530 if not (target.size() == input.size()):
2531 warnings.warn("Using a target size ({}) that is different to the input size ({}). "
2532 "This will likely lead to incorrect results due to broadcasting. "
/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py in __getattr__(self, name)
592 return modules[name]
593 raise AttributeError("'{}' object has no attribute '{}'".format(
--> 594 type(self).__name__, name))
595
596 def __setattr__(self, name, value):
AttributeError: 'UNet3D' object has no attribute 'size'
You have a typo on this line:
pred = model
should be
pred = model(x)
model is nn.Module object which describes the network. x, y, pred are (supposed to be) torch tensors.
Aside from this particular case, I think it would be good to think about how to solve this type of problems in general.
You saw an error (exception) on a certain line. Is the problem there, or earlier? Can you isolate the problem?
For example, if you print out the arguments you're passing to criterion(pred, y) just before the call, do they look right? (they don't)
What happens if you create a couple of tensors of the right shape just before the call and pass them instead? (works fine)
What is the error really saying? "AttributeError: 'UNet3D' object has no attribute 'size'" - well, of course it's not supposed to have a size, but why is the code trying to access it's size? Actually, why is the code even able to access that object on that line? (since the model is not supposed to be passed to the criterion function - right?)
Maybe useful further reading: https://ericlippert.com/2014/03/05/how-to-debug-small-programs/
Related
i'm making a code that classifies numbers by using pytorch
epochess =[]
train_losses = []
test_losses = []
acc_training =[]
acc_testing = []
for epoch in range (epochs):
train_acc, train_epoch_loss = train_CNN(model,loss_function, optimizer, train_load, device)
print('epoch',epoch ,'training loss',train_epoch_loss)
train_losses.append(train_epoch_loss)
print('epoch',epoch,'training accuracy',train_acc)
acc_training.append(train_acc)
test_acc, test_epoch_loss = validate_CNN(model, loss_function, test_load, device)
print('epoch',epoch,'testing loss',test_epoch_loss)
test_losses.append(test_epoch_loss)
print('epoch',epoch,'testing accuracy',test_acc)
acc_testing.append(test_acc)
epochess.append(epoch)
and I get an erreur , I was following the right path just like it said on youtube
here's the following erreur
---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call last)
<ipython-input-17-0bcb51ebbc3d> in <module>
5 acc_testing = []
6 for epoch in range (epochs):
----> 7 train_acc, train_epoch_loss = train_CNN(model,loss_function, optimizer, train_load, device)
8 print('epoch',epoch ,'training loss',train_epoch_loss)
9 train_losses.append(train_epoch_loss)
2 frames
/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py in _forward_unimplemented(self, *input)
242 registered hooks while the latter silently ignores them.
243 """
--> 244 raise NotImplementedError(f"Module [{type(self).__name__}] is missing the required \"forward\" function")
245
246
NotImplementedError: Module [CNN] is missing the required "forward" function
How did you implement your model?
Did you use a built-in model from PyTorch or did you create a custom model?
If you created a custom model, make sure you use the right components from PyTorch (e.g. torch.nn.Linear and torch.nn.Conv2d https://pytorch.org/tutorials/beginner/introyt/modelsyt_tutorial.html), otherwise PyTorch might complain about certain functions missing, like is happening in your case.
I have seen this problem the first time, I never encountered such an error in previous Python projects. Here is my training code:
def train(net, opt, criterion,ucf_train, batchsize,i):
opt.zero_grad()
total_loss = 0
net=net.eval()
net=net.train()
for vid in range(i*batchsize,i*batchsize+batchsize,1):
output=infer(net,ucf_train[vid])
m=get_label_no(ucf_train[vid])
m=m.cuda( )
loss = criterion(output,m)
loss.backward(retain_graph=True)
total_loss += loss
opt.step() #updates wghts and biases
return total_loss/n_points
code for infer(net,input)
def infer(net, name):
net.eval()
hidden_0 = net.init_hidden()
hidden_1 = net.init_hidden()
hidden_2 = net.init_hidden()
video_path = fetch_ucf_video(name)
cap = cv2.VideoCapture(video_path)
resize=(224,224)
T=FrameCapture(video_path)
print(T)
lim=T-(T%20)-2
i=0
while(1):
ret, frame2 = cap.read()
frame2= cv2.resize(frame2, resize)
# print(type(frame2))
if (i%20==0 and i<lim):
input=normalize(frame2)
input=input.cuda()
output,hidden_0,hidden_1, hidden_2 = net(input, hidden_0, hidden_1, hidden_2)
elif (i>=lim):
break
i=i+1
op=output
torch.cuda.empty_cache()
op=op.cuda()
return op
I am getting this error, I tried with model.train() following this where net is my model:
RuntimeError Traceback (most recent call last)
<ipython-input-62-42238f3f6877> in <module>()
----> 1 train(net1,opt,criterion,ucf_train,1,0)
2 frames
/usr/local/lib/python3.6/dist-packages/torch/autograd/__init__.py in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables)
125 Variable._execution_engine.run_backward(
126 tensors, grad_tensors, retain_graph, create_graph,
--> 127 allow_unreachable=True) # allow_unreachable flag
128
129
RuntimeError: cudnn RNN backward can only be called in training mode
You should remove the net.eval() call that comes right after the def infer(net, name):
It needs to be removed because you call this infer function inside your training code. Your model needs to be in train mode throughout the the whole training.
And you never set your model back to train after calling eval as well, so that is the root of the exception you are getting. If you want to use this infer code in your test cases, you can cover that case with an if.
Also the net.eval() that comes right after the total_loss=0 assignment is not useful since you call net.train() right after that. You can also remove that one since it gets neutralized right in next line.
The updated code
def train(net, opt, criterion,ucf_train, batchsize,i):
opt.zero_grad()
total_loss = 0
net=net.train()
for vid in range(i*batchsize,i*batchsize+batchsize,1):
output=infer(net,ucf_train[vid])
m=get_label_no(ucf_train[vid])
m=m.cuda( )
loss = criterion(output,m)
loss.backward(retain_graph=True)
total_loss += loss
opt.step() #updates wghts and biases
return total_loss/n_points
code for infer(net,input)
def infer(net, name, is_train=True):
if not is_train:
net.eval()
hidden_0 = net.init_hidden()
hidden_1 = net.init_hidden()
hidden_2 = net.init_hidden()
video_path = fetch_ucf_video(name)
cap = cv2.VideoCapture(video_path)
resize=(224,224)
T=FrameCapture(video_path)
print(T)
lim=T-(T%20)-2
i=0
while(1):
ret, frame2 = cap.read()
frame2= cv2.resize(frame2, resize)
# print(type(frame2))
if (i%20==0 and i<lim):
input=normalize(frame2)
input=input.cuda()
output,hidden_0,hidden_1, hidden_2 = net(input, hidden_0, hidden_1, hidden_2)
elif (i>=lim):
break
i=i+1
op=output
torch.cuda.empty_cache()
op=op.cuda()
return op
I'm using Talos and Google colab TPU to run hyperparameter tuning of a Keras model. Note that I'm using Tensorflow 1.15.0 and Keras 2.2.4-tf.
import os
import tensorflow as tf
import talos as ta
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
def iris_model(x_train, y_train, x_val, y_val, params):
# Specify a distributed strategy to use TPU
resolver = tf.contrib.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
tf.contrib.distribute.initialize_tpu_system(resolver)
strategy = tf.contrib.distribute.TPUStrategy(resolver)
# Use the strategy to create and compile a Keras model
with strategy.scope():
model = Sequential()
model.add(Dense(32, input_shape=(4,), activation=tf.nn.relu, name="relu"))
model.add(Dense(3, activation=tf.nn.softmax, name="softmax"))
model.compile(optimizer=Adam(learning_rate=0.1), loss=params['losses'])
# Convert data type to use TPU
x_train = x_train.astype('float32')
x_val = x_val.astype('float32')
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.cache()
dataset = dataset.shuffle(1000, reshuffle_each_iteration=True).repeat()
dataset = dataset.batch(params['batch_size'], drop_remainder=True)
# Fit the Keras model on the dataset
out = model.fit(dataset, batch_size=params['batch_size'], epochs=params['epochs'], validation_data=[x_val, y_val], verbose=0, steps_per_epoch=2)
return out, model
# Load dataset
X, y = ta.templates.datasets.iris()
# Train and test set
x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=0.30, shuffle=False)
# Create a hyperparameter distributions
p = {'losses': ['logcosh'], 'batch_size': [128, 256, 384, 512, 1024], 'epochs': [10, 20]}
# Use Talos to scan the best hyperparameters of the Keras model
scan_object = ta.Scan(x_train, y_train, params=p, model=iris_model, experiment_name='test', x_val=x_val, y_val=y_val, fraction_limit=0.1)
After converting the train set to a Dataset using tf.data.Dataset, I get the following error when fitting the model with out = model.fit:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-3-c812209b95d0> in <module>()
8
9 # Use Talos to scan the best hyperparameters of the Keras model
---> 10 scan_object = ta.Scan(x_train, y_train, params=p, model=iris_model, experiment_name='test', x_val=x_val, y_val=y_val, fraction_limit=0.1)
8 frames
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training.py in _validate_or_infer_batch_size(self, batch_size, steps, x)
1813 'The `batch_size` argument must not be specified for the given '
1814 'input type. Received input: {}, batch_size: {}'.format(
-> 1815 x, batch_size))
1816 return
1817
ValueError: The `batch_size` argument must not be specified for the given input type. Received input: <DatasetV1Adapter shapes: ((512, 4), (512, 3)), types: (tf.float32, tf.float32)>, batch_size: 512
Then, if I follow those instructions and don't set the batch-size argument to model.fit. I get another error in:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-3-c812209b95d0> in <module>()
8
9 # Use Talos to scan the best hyperparameters of the Keras model
---> 10 scan_object = ta.Scan(x_train, y_train, params=p, model=iris_model, experiment_name='test', x_val=x_val, y_val=y_val, fraction_limit=0.1)
8 frames
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training.py in _distribution_standardize_user_data(self, x, y, sample_weight, class_weight, batch_size, validation_split, shuffle, epochs, allow_partial_batch)
2307 strategy) and not drop_remainder:
2308 dataset_size = first_x_value.shape[0]
-> 2309 if dataset_size % batch_size == 0:
2310 drop_remainder = True
2311
TypeError: unsupported operand type(s) for %: 'int' and 'NoneType'
There seems to be an issue on keras distributed code.
If you take a look at
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-3-c812209b95d0> in <module>()
8
9 # Use Talos to scan the best hyperparameters of the Keras model
---> 10 scan_object = ta.Scan(x_train, y_train, params=p, model=iris_model, experiment_name='test', x_val=x_val, y_val=y_val, fraction_limit=0.1)
8 frames
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training.py in _distribution_standardize_user_data(self, x, y, sample_weight, class_weight, batch_size, validation_split, shuffle, epochs, allow_partial_batch)
2307 strategy) and not drop_remainder:
2308 dataset_size = first_x_value.shape[0]
-> 2309 if dataset_size % batch_size == 0:
2310 drop_remainder = True
2311
TypeError: unsupported operand type(s) for %: 'int' and 'NoneType'
you can see that the error is thrown at operation "dataset_size % batch_size" and it states "unsupported operand type(s) for %: 'int' and 'NoneType'". This means that at that point the batch_size variable should have already been inferred from the Dataset object but it is still 'None'
If you take a look at the source code (you can access it from collab by clicking on the path), you will see that in the fit function
def fit(self,
model,
x=None,
y=None,
batch_size=None,
epochs=1,
verbose=1,
callbacks=None,
validation_split=0.,
validation_data=None,
shuffle=True,
class_weight=None,
sample_weight=None,
initial_epoch=0,
steps_per_epoch=None,
validation_steps=None,
validation_freq=1,
**kwargs):
"""Fit loop for Distribution Strategies."""
dist_utils.validate_callbacks(input_callbacks=callbacks,
optimizer=model.optimizer)
dist_utils.validate_inputs(x, y)
batch_size, steps_per_epoch = dist_utils.process_batch_and_step_size(
model._distribution_strategy,
x,
batch_size,
steps_per_epoch,
ModeKeys.TRAIN,
validation_split=validation_split)
batch_size = model._validate_or_infer_batch_size(
batch_size, steps_per_epoch, x)
dataset = model._distribution_standardize_user_data(
there is a step
batch_size = model._validate_or_infer_batch_size(
batch_size, steps_per_epoch, x)
in which the batch_size should change from 'None' (default value when not specified) to the one inferred from the Dataset object (but it doesn't, I checked by printing the variable). I think this might be related to the fact that your batch_size is in fact a list of batch_sizes. If you change the source code (you can directly edit it from collab and then click on restart runtime in order to try) to this:
batch_size, steps_per_epoch = dist_utils.process_batch_and_step_size(
model._distribution_strategy,
x,
batch_size,
steps_per_epoch,
ModeKeys.TRAIN,
validation_split=validation_split)
batch_size = model._validate_or_infer_batch_size(
batch_size, steps_per_epoch, x)
batch_size = 128
dataset = model._distribution_standardize_user_data(
(see that I manually inserted the batch_size in the source code after the point at which it should have been inferred) the program runs with no error.
Maybe the fact of trying different batch_sizes for hyparameter tunning is a feature that is just not feasible with this current versions. I tried tf 2.1 and did not work either.
I'm learn tensorflow2.0 from official tutorials.I can understand the result from below code.
def square_if_positive(x):
return [i ** 2 if i > 0 else i for i in x]
square_if_positive(range(-5, 5))
# result
[-5, -4, -3, -2, -1, 0, 1, 4, 9, 16]
But if I change the inputs with tensor not python code, just like this
def square_if_positive(x):
return [i ** 2 if i > 0 else i for i in x]
square_if_positive(tf.range(-5, 5))
I get below error!!
OperatorNotAllowedInGraphError Traceback (most recent call last)
<ipython-input-39-6c17f29a3443> in <module>
2 def square_if_positive(x):
3 return [i**2 if i > 0 else i for i in x]
----> 4 square_if_positive(tf.range(10))
5 # measure_graph_size(square_if_positive, range(10))
~/tf2_workspace/tf2.0/lib/python3.6/site-packages/tensorflow_core/python/eager/def_function.py in __call__(self, *args, **kwds)
437 # This is the first call of __call__, so we have to initialize.
438 initializer_map = {}
--> 439 self._initialize(args, kwds, add_initializers_to=initializer_map)
440 if self._created_variables:
441 try:
~/tf2_workspace/tf2.0/lib/python3.6/site-packages/tensorflow_core/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
380 self._concrete_stateful_fn = (
381 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
--> 382 *args, **kwds))
383
384 def invalid_creator_scope(*unused_args, **unused_kwds):
~/tf2_workspace/tf2.0/lib/python3.6/site-packages/tensorflow_core/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
1793 if self.input_signature:
1794 args, kwargs = None, None
-> 1795 graph_function, _, _ = self._maybe_define_function(args, kwargs)
1796 return graph_function
1797
~/tf2_workspace/tf2.0/lib/python3.6/site-packages/tensorflow_core/python/eager/function.py in _maybe_define_function(self, args, kwargs)
2093 graph_function = self._function_cache.primary.get(cache_key, None)
2094 if graph_function is None:
-> 2095 graph_function = self._create_graph_function(args, kwargs)
2096 self._function_cache.primary[cache_key] = graph_function
2097 return graph_function, args, kwargs
~/tf2_workspace/tf2.0/lib/python3.6/site-packages/tensorflow_core/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
1984 arg_names=arg_names,
1985 override_flat_arg_shapes=override_flat_arg_shapes,
-> 1986 capture_by_value=self._capture_by_value),
1987 self._function_attributes,
1988 # Tell the ConcreteFunction to clean up its graph once it goes out of
~/tf2_workspace/tf2.0/lib/python3.6/site-packages/tensorflow_core/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
851 converted_func)
852
--> 853 func_outputs = python_func(*func_args, **func_kwargs)
854
855 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
~/tf2_workspace/tf2.0/lib/python3.6/site-packages/tensorflow_core/python/eager/def_function.py in wrapped_fn(*args, **kwds)
323 # __wrapped__ allows AutoGraph to swap in a converted function. We give
324 # the function a weak reference to itself to avoid a reference cycle.
--> 325 return weak_wrapped_fn().__wrapped__(*args, **kwds)
326 weak_wrapped_fn = weakref.ref(wrapped_fn)
327
~/tf2_workspace/tf2.0/lib/python3.6/site-packages/tensorflow_core/python/framework/func_graph.py in wrapper(*args, **kwargs)
841 except Exception as e: # pylint:disable=broad-except
842 if hasattr(e, "ag_error_metadata"):
--> 843 raise e.ag_error_metadata.to_exception(type(e))
844 else:
845 raise
OperatorNotAllowedInGraphError: in converted code:
<ipython-input-37-6c17f29a3443>:3 square_if_positive *
return [i**2 if i > 0 else i for i in x]
/Users/zhangpan/tf2_workspace/tf2.0/lib/python3.6/site-packages/tensorflow_core/python/framework/ops.py:547 __iter__
self._disallow_iteration()
/Users/zhangpan/tf2_workspace/tf2.0/lib/python3.6/site-packages/tensorflow_core/python/framework/ops.py:540 _disallow_iteration
self._disallow_when_autograph_enabled("iterating over `tf.Tensor`")
/Users/zhangpan/tf2_workspace/tf2.0/lib/python3.6/site-packages/tensorflow_core/python/framework/ops.py:518 _disallow_when_autograph_enabled
" decorating it directly with #tf.function.".format(task))
OperatorNotAllowedInGraphError: iterating over `tf.Tensor` is not allowed: AutoGraph did not convert this function. Try decorating it directly with #tf.function.
I can't find any specifications about this error. I think the real reason is not "iterating over tf.Tensor is not allowed" . Becase I can write like this.
#tf.function
def square_if_positive(x):
for i in x:
if i>0:
tf.print(i**2)
else:
tf.print(i)
square_if_positive(tf.range(10))
I iterate over tensor just like above code.
So my question is what's the real reason about this error? Any suggestions will help me. I really can't understand this error through I read a lot of materials.
The root cause is that autograph doesn't yet support list comprehensions (primarily because it's difficult to determine the dtype of the result in all cases)
As a workaround, you can use tf.map_fn for the comprehension:
return tf.map_fn(lambda i: i ** 2 if i > 0 else i, x)
For more information please take a look at this issue
In case it helps someone.
I had the same problem with a code that did:
for index, image in enumerate(inputs):
... My code ...
The solution was just to do:
index = 0
for image in inputs:
.... My code ...
index += 1
I had a similar issue when using tf.range() instead of python's range() for a list comprehension inside a tensorflow graph function. I was training a 3D segmentation neural net and had to use range() for the code to work.
Check the pseudo code below:-
Y = # [Batch,Height,Width,Depth,Channels]
y_predict = # [B,H,W,D,C,MC_Runs] ; MC_Runs=Monte Carlo Runs
#tf.function
def train_loss(Y,y_predict):
# calulate loss and return scalar value
#tf.function
def train_step():
loss = [train_loss(Y, y_predict[:,:,:,:,:,id_])) for id_ in range(MC_RUNS)]
loss = tf.math.reduce_mean(loss)
I currently work myself through the caffe/examples/ to learn more about caffe/pycaffe.
In the 02-fine-tuning.ipynb-notebook there is a codecell which shows how to create a caffenet which takes unlabeled "dummmy data" as input, allowing us to set its input images externally. The notebook can be found here:
https://github.com/BVLC/caffe/blob/master/examples/02-fine-tuning.ipynb
There is a given code-cell, which throws an error:
dummy_data = L.DummyData(shape=dict(dim=[1, 3, 227, 227]))
imagenet_net_filename = caffenet(data=dummy_data, train=False)
imagenet_net = caffe.Net(imagenet_net_filename, weights, caffe.TEST)
error:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-6-9f0ecb4d95e6> in <module>()
1 dummy_data = L.DummyData(shape=dict(dim=[1, 3, 227, 227]))
----> 2 imagenet_net_filename = caffenet(data=dummy_data, train=False)
3 imagenet_net = caffe.Net(imagenet_net_filename, weights, caffe.TEST)
<ipython-input-5-53badbea969e> in caffenet(data, label, train, num_classes, classifier_name, learn_all)
68 # write the net to a temporary file and return its filename
69 with tempfile.NamedTemporaryFile(delete=False) as f:
---> 70 f.write(str(n.to_proto()))
71 return f.name
~/anaconda3/envs/testcaffegpu/lib/python3.6/tempfile.py in func_wrapper(*args, **kwargs)
481 #_functools.wraps(func)
482 def func_wrapper(*args, **kwargs):
--> 483 return func(*args, **kwargs)
484 # Avoid closing the file as long as the wrapper is alive,
485 # see issue #18879.
TypeError: a bytes-like object is required, not 'str'
Anyone knows how to do this right?
tempfile.NamedTemporaryFile() opens a file in binary mode ('w+b') by default. Since you are using Python3.x, string is not the same type as for Python 2.x, hence providing a string as input to f.write() results in error since it expects bytes. Overriding the binary mode should avoid this error.
Replace
with tempfile.NamedTemporaryFile(delete=False) as f:
with
with tempfile.NamedTemporaryFile(delete=False, mode='w') as f:
This has been explained in a previous post:
TypeError: 'str' does not support the buffer interface