Derivation of intial bearing calculation - gis

I needed to make calculations of the initial bearing between two coordinates described in latitude/longitude. I have found one formulation of this calculation as
Note, I tried formatting the equation with LaTeX but I couldn't see how to do that on stack, using $$ didn't seem to do anything.
This calculation can be found on various sites like link 1 2 3 but I have not been able to find a derivation or a source for the calculation.
I am looking for a derivation or an explanation of the derivation of this calculation.

Related

Derivative of a Function in Modelica

First, excuse me for not providing a minimal working example, it is that I just can't think of one, really. I'll just give some pieces of code and ask my question "in principle".
I'm doing thermophysical properties calculation with a real gas model (Peng-Robinson) and here I am having problems when translating a model, where I use pressure p and specific enthalpy h as inputs to calculate all other properties. When it comes to calculating the temperature T, it is linked to the enthalpy h via an equation called departure function, which is itself a function of T. In Modelica it looks like this:
Dh_real = R_m*T*(Z - 1) + (T*dadT - a)/(sqrt(8)*b)*log((Z + (1 + sqrt(2))*B)/(Z + (1 - sqrt(2))*B));
Here a, dadT and Z are also temperature-dependent scalars and partly calculated using matrix operations (dadT) or polynomial-root-calculation (Z) in functions, b and B are parameters.
Calculating the enthalpy from an input temperature (in another model) is straightforward and working fine, the solver can solve the departure function analytically. The other direction has to be solved numerically and this is, I think, why Dymola gives me this error, when translating.
Cannot find differentiation function:
DadT_Unique2([some parameters and T])
with respect to time
Failed to differentiate the equation
dadT = DadT_Unique2([some parameters and T]);
in order to reduce the DAE index.
Failed to reduce the DAE index.
Now DadT is a function within the model, where I use some simple matrix operations to calculate dadT from some parameters and the temperature T. Obviously, Dymola is in need of the derivative of some internal _Unique2-function.
I couldn't find anything in the specification nor in the web about this. Can I provide a derivative of the functions somehow? I tried the smoothOrder-annotation, but without effect. How can I deal with this?
This is not a full answer, but a list of interesting links that you should read:
Michael Tiller on annotation(derivative=dxyz) and other annotations:
http://book.xogeny.com/behavior/functions/func_annos/#derivative
Claytex on numerical Jacobians and flag Hidden.PrintFailureToDifferentiate:
http://www.claytex.com/blog/how-can-i-make-my-models-run-faster/
Two related questions here on StackOverflow:
Dymola solving stationary equation systems for Media-Model
Two-Phase Modelica Media example
Some related Modelica conference papers:
https://modelica.org/events/Conference2005/online_proceedings/Session1/Session1c2.pdf
http://dx.doi.org/10.3384/ecp15118647
http://dx.doi.org/10.3384/ecp15118653
Cubic equation of state, generalized form (table 4.2)
https://books.google.de/books?id=_Op6DQAAQBAJ&pg=PA187
Solving cubic equations of state:
http://dx.doi.org/10.1002/aic.690480421
https://books.google.com/books?id=dd410GGw8wUC&pg=PA48
https://books.google.com/books?id=1rOA5I6kQ7gC&pg=PA620 (Appendix C)
Rewriting partial derivatives:
https://scholar.google.com/scholar?cluster=3379879976574799663

fft: fitting binned data

I want to fit a curve to data obtained from an FFT. While working on this, I remembered that an FFT gives binned data, and therefore I wondered if I should treat this differently with curve-fitting.
If the bins are narrow compared to the structure, I think it should not be necessary to treat the data differently, but for me that is not the case.
I expect the right way to fit binned data is by minimizing not the difference between values of the bin and fit, but between bin area and the area beneath the fitted curve, for each bin, such that the energy in each bin matches the energy in the range of the bin as signified by the curve.
So my question is: am I thinking correctly about this? If not, how should I go about it?
Also, when looking around for information about this subject, I encountered the "Maximum log likelihood" for example, but did not find enough information about it to understand if and how it applied to my situation.
PS: I have no clue if this is the right site for this question, please let me know if there is a better place.
For an unwindowed FFT, the correct interpolation between bins is by using a Sinc (sin(x)/x) or periodic Sinc (Dirichlet) interpolation kernel. For an FFT of samples of a band-limited signal, thus will reconstruct the continuous spectrum.
A very simple and effective way of interpolating the spectrum (from an FFT) is to use zero-padding. It works both with and without windowing prior to the FFT.
Take your input vector of length N and extend it to length M*N, where M is an integer
Set all values beyond the original N values to zeros
Perform an FFT of length (N*M)
Calculate the magnitude of the ouput bins
What you get is the interpolated spectrum.
Best regards,
Jens
This can be done by using maximum log likelihood estimation. This is a method that finds the set of parameters that is most likely to have yielded the measured data - the technique originates in statistics.
I have finally found an understandable source for how to apply this to binned data. Sadly I cannot enter formulas here, so I refer to that source for a full explanation: slide 4 of this slide show.
EDIT:
For noisier signals this method did not seem to work very well. A method that was a bit more robust is a least squares fit, where the difference between the area is minimized, as suggested in the question.
I have not found any literature to defend this method, but it is similar to what happens in the maximum log likelihood estimation, and yields very similar results for noiseless test cases.

How to Solve non-specific non-linear equations?

I am attempting to fit a circle to some data. This requires numerically solving a set of three non-linear simultaneous equations (see the Full Least Squares Method of this document).
To me it seems that the NEWTON function provided by IDL is fit for solving this problem. NEWTON requires the name of a function that will compute the values of the equation system for particular values of the independent variables:
FUNCTION newtfunction,X
RETURN, [Some function of X, Some other function of X]
END
While this works fine, it requires that all parameters of the equation system (in this case the set of data points) is hard coded in the newtfunction. This is fine if there is only one data set to solve for, however I have many thousands of data sets, and defining a new function for each by hand is not an option.
Is there a way around this? Is it possible to define functions programmatically in IDL, or even just pass in the data set in some other manner?
I am not an expert on this matter, but if I were to solve this problem I would do the following. Instead of solving a system of 3 non-linear equations to find the three unknowns (i.e. xc, yc and r), I would use an optimization routine to converge to a solution by starting with an initial guess. For this steepest descent, conjugate gradient, or any other multivariate optimization method can be used.
I just quickly derived the least square equation for your problem as (please check before use):
F = (sum_{i=1}^{N} (xc^2 - 2 xi xc + xi^2 + yc^2 - 2 yi yc + yi^2 - r^2)^2)
Calculating the gradient for this function is fairly easy, since it is just a summation, and therefore writing a steepest descent code would be trivial, to calculate xc, yc and r.
I hope it helps.
It's usual to use a COMMON block in these types of functions to pass in other parameters, cached values, etc. that are not part of the calling signature of the numeric routine.

Can coordinates of constructable points be represented exactly?

I'd like to write a program that lets users draw points, lines, and circles as though with a straightedge and compass. Then I want to be able to answer the question, "are these three points collinear?" To answer correctly, I need to avoid rounding error when calculating the points.
Is this possible? How can I represent the points in memory?
(I looked into some unusual numeric libraries, but I didn't find anything that claimed to offer both exact arithmetic and exact comparisons that are guaranteed to terminate.)
Yes.
I highly recommend Introduction to constructions, which is a good basic guide.
Basically you need to be able to compute with constructible numbers - numbers that are either rational, or of the form a + b sqrt(c) where a,b,c were previously created (see page 6 on that PDF). This could be done with algebraic data type (e.g. data C = Rational Integer Integer | Root C C C in Haskell, where Root a b c = a + b sqrt(c)). However, I don't know how to perform tests with that representation.
Two possible approaches are:
Constructible numbers are a subset of algebraic numbers, so you can use algebraic numbers.
All algebraic numbers can be represented using polynomials of whose they are roots. The operations are computable, so if you represent a number a with polynomial p and b with polynomial q (p(a) = q(b) = 0), then it is possible to find a polynomial r such that r(a+b) = 0. This is done in some CASes like Mathematica, example. See also: Computional algebraic number theory - chapter 4
Use Tarski's test and represent numbers. It is slow (doubly exponential or so), but works :) Example: to represent sqrt(2), use the formula x^2 - 2 && x > 0. You can write equations for lines there, check if points are colinear etc. See A suite of logic programs, including Tarski's test
If you turn to computable numbers, then equality, colinearity etc. get undecidable.
I think the only way this would be possible is if you used a symbolic representation,
as opposed to trying to represent coordinate values directly -- so you would have
to avoid trying to coerce values like sqrt(2) into some numerical format. You will
be dealing with irrational numbers that are not finitely representable in binary,
decimal, or any other positional notation.
To expand on Jim Lewis's answer slightly, if you want to operate on points that are constructible from the integers with exact arithmetic, you will need to be able to operate on representations of the form:
a + b sqrt(c)
where a, b, and c are either rational numbers, or representations in the form given above. Wikipedia has a pretty decent article on the subject of what points are constructible.
Answering the question of exact equality (as necessary to establish colinearity) with such representations is a rather tricky problem.
If you try to compare co-ordinates for your points, then you have a problem. Leaving aside co-linearity for a moment, how about just working out whether two points are the same or not?
Supposing that one has given co-ordinates, and the other is a compass-straightedge construction starting from certain other co-ordinates, you want to determine with certainty whether they're the same point or not. Either way is a theorem of Euclidean geometry, it's not something you can just measure. You can prove they aren't the same by spotting some difference in their co-ordinates (for example by computing decimal places of each until you encounter a difference). But in general to prove they are the same cannot be done by approximate methods. Compute as many decimal places as you like of some expansions of 1/sqrt(2) and sqrt(2)/2, and you can prove they're very close together but you won't ever prove they're equal. That takes algebra (or geometry).
Similarly, to show that three points are co-linear you will need theorem-proving software. Represent the points A, B, C by their constructions, and attempt to prove the theorem "A, B and C are colinear". This is very hard - your program will prove some theorems but not others. Much easier is to ask the user for a proof that they are co-linear, and then verify (or refute) that proof, but that's probably not what you want.
In general, constructable points may have an arbitrarily complex symbolic form, so you must use a symbolic representation to work them exactly. As Stephen Canon noted above, you often need numbers of the form a+b*sqrt(c), where a and b are rational and c is an integer. All numbers of this form form a closed set under arithmetic operations. I have written some C++ classes (see rational_radical1.h) to work with these numbers if that is all you need.
It is also possible to construct numbers which are sums of any number of terms of rational multiples of radicals. When dealing with more than a single radicand, the numbers are no longer closed under multiplication and division, so you will need to store them as variable length rational coefficient arrays. The time complexity of operations will then be quadratic in the number of terms.
To go even further, you can construct the square root of any given number, so you could potentially have nested square roots. Here, the representations must be tree-like structures to deal with root hierarchy. While difficult to implement, there is nothing in principle preventing you from working with these representations. I'm not sure just what additional numbers can be constructed, but beyond a certain point, your symbolic representation will be expressive enough to handle very large classes of numbers.
Addendum
Found this Google Books link.
If the grid axes are integer valued then the answer is fairly straight forward, the points are either exactly colinear or they are not.
Typically however, one works with real numbers (well, floating points) and then draws the rounded values on the screen which does exist in integer space. In this case you have no choice but to pick a tolerance and use it to determine colinearity. Keep it small and the users will never know the difference.
You seem to be asking, in effect, "Can the normal mathematics (integer or floating point) used by computers be made to represent real numbers perfectly, with no rounding errors?" And, of course, the answer to that is "No." If you want theoretical correctness, then you will be stuck with the much harder problem of symbolic manipulation and coding up the equivalent of the inferences that are done in geometry. (In short, I'm agreeing with Steve Jessop, above.)
Some thoughts in the hope that they might help.
The sort of constructions you're talking about will require multiplication and division, which means that to preserve exactness you'll have to use rational numbers, which are generally easy to implement on top of a suitable sort of big integer (i.e., of unbounded magnitude). (Common Lisp has these built-in, and there have to be other languages.)
Now, you need to represent square roots of arbitrary numbers, and these have to be mixed in.
Therefore, a number is one of: a rational number, a rational number multiplied by a square root of a rational number (or, alternately, just the square root of a rational), or a sum of numbers. In order to prove anything, you're going to have to get these numbers into some sort of canonical form, which for all I can figure offhand may be annoying and computationally expensive.
This of course means that the users will be restricted to rational points and cannot use arbitrary rotations, but that's probably not important.
I would recommend no to try to make it perfectly exact.
The first reason for this is what you are asking here, the rounding error and all that stuff that comes with floating point calculations.
The second one is that you have to round your input as the mouse and screen work with integers. So, initially all user input would be integers, and your output would be integers.
Beside, from a usability point of view, its easier to click in the neighborhood of another point (in a line for example) and that the interface consider you are clicking in the point itself.

2D non-polynomial function fitting from the command line

I just wrote a simple Unix command line utility that could be implemented a lot more efficiently. I can measure its performance by just running it on a number of inputs and measuring the time it takes. This will produce a set of pairs of numbers, s t, where s is the input size and t the processing time. In order to determine the performance characteristics of my utility, I need to fit a function through these data points. I can do this manually, but I prefer to be lazy and let a utility do it for me.
Does such a utility exist?
Its input is a sequence of pairs of numbers.
Its output is a formula that expresses how the second number depends as a function on the first, plus an error measure.
One step of the way is to have a utility that does this just for polynomials.
This has been discussed here but it didn't produce a ready-to-use solution.
The next step is to extend the utility to try non-polynomial terms: negative-degree polynomials (as in y = 1/x) and logarithmic terms (as in y = x log x) will need to be tried as well. One idea to cope with the non-polynomial terms is to just surround the polynomial fitting with x and y scale transformations. I don't know whether that will do. This question is related but not exactly the same.
As I said, I'm lazy: I'm not looking for ideas on how to to write this myself, I'm looking for a reliable result of a project that has already done it for me. Any suggestions?
I believe that SAS has this, RS/1 has this, I think that Mathematica has this, Execel and most spreadsheets have a primitive form of this and usually there are add-ons available for more advanced forms. There are lots of Lab analysis and Statistical analysis tools that have stuff like this.
RE., Command Line Tools:
SAS, RS/1 and Minitab were all command line tools 20 years ago when I used them. I bet at least one of them still has this capability.