I have a USER table with millions of rows. I am implementing a search function that allows someone to look for a user by typing in a username. This autocomplete feature needs to be blazingly fast. Given that, in MySQL, column indexes speed up queries using LIKE {string}%, is the following approach performant enough to return within 200ms? (Note: Memory overhead is not an issue here, username are maximum 30 characters).
Create a USERSEARCH table that has a foreign key to the user table and an indexed ngram username column:
USERSEARCH
user_id username_ngram
-------------------------
1 crazyguy23
1 razyguy23
1 azyguy23
1 zyguy23
...
The query would then be:
SELECT user_id FROM myapp.usersearch WHERE username_ngram LIKE {string}%
LIMIT 10
I am aware that third party solutions exist, but I would like to stay away from them at the moment for other reasons. Is this approach viable in terms of speed? Am I overestimating the power of indexes if the db would need to check all O(30n) rows where n is the number of users?
Probably not. The union distinct is going to process each subquery to completion.
If you just want arbitrary rows, phrase this as:
(SELECT user_id
FROM myapp.usersearch
WHERE username_1 LIKE {string}%
LIMIT 10
) UNION DISTINCT
(SELECT user_id
FROM myapp.usersearch
WHERE username_2 LIKE {string}%
LIMIT 10
)
LIMIT 10;
This will at least save you lots of time for common prefixes -- say 'S'.
That said, this just returns an arbitrary list of 10 user_ids when there might be many more.
I don't know if the speed will be fast enough for your application. You have to make that judgement by testing on an appropriate set of data.
Assuming SSDs, that should be blazing fast, yes.
Here are some further optimizations:
I would add a DISTINCT to your query, since there is no point in returning the same user_id multiple times. Especially when searching for a very common prefix, such as a single letter.
Also consider searching only for at least 3 letters of input. Less tends to be meaningless (since hopefully your usernames are at least 3 characters long) and is a needless hit on your database.
If you're not adding any more columns (I hope you're not, since this table is meant for blazing fast search!), we can do better. Swap the columns. Make the primary key (username_ngram, user_id). This way, you're searching directly on the primary key. (Note the added benefit of the alphabet ordering of the results! Well... alphabetic on the matching suffixes, that is, not the full usernames.)
Make sure you have an index on user_id, to be able to replace everything for a user if you ever need to change a username. (To do so, just delete all rows for that user_id and insert brand new ones.)
Perhaps we can do even better. Since this is just for fast searching, you could use an isolation level of READ_UNCOMMITTED. That avoids placing any read locks, if I'm not mistaken, and should be even faster. It can read uncommitted data, but so what... Afterwards you'll just query any resulting user_ids in another table and perhaps not find them, if that user was still being created. You haven't lost anything. :)
I think you nedd to use mysql full text index to improve performance.
You need to change your syntax to use your full text index.
Create full text index:
CREATE FULLTEXT INDEX ix_usersearch_username_ngram ON usersearch(username_ngram);
The official mysql documentation how to use full text index: https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
Related
I would like to make system whitch allows to search user messages, by specific user.
assume having folowing table
create table messages(
user_id int,
message nvarchar(500));
So what kind of index I should use here, if I want to search for all messages from user 1, containing word 'foo'.
Simple, non unique index user_id
It will filter only specific user messages nd then full scan for specific word.
FULLTEXT index on message
this will find all messages from all users and then filter by ID, seems to be very inefficient in case of big amount of users.
comopound index on both user_id and message
So full text index tree is created for each user separately, so they can be searched individually. During query system filters messages by ID and then performs text search on remaining rows in index.
A.F.A.I.K. last one is impossible. So then I assume I shall use 1-st option, It will perform better in case of few thousands of users?
And if each will have ~100 messages, full iteration won't cost much resources?
Perhaps I can include username into message and use BOOLEAN full text search mode, but I think it would be slower than by using indexed user_id.
#Alden Quimby's answer is correct as far as it goes, but there is more to the story, because MySQL will only try to choose the optimal index, and its ability to make that determination is limited because of the way fulltext indexes interact with the optimizer.
What actually happens is this:
If the specified user_id exists in either 0 or 1 matching rows in the table, the optimizer will realize this and will choose user_id as the index for that query. Fast execution.
Otherwise, the optimizer will choose the fulltext index, filtering every row matched by the fulltext index to eliminate rows not containing a user_id that matches the WHERE clause. Not quite as fast.
So it's not truly the "optimum" path. It's more like fulltext, with a nice optimization to avoid the fulltext search under the one condition that we know we have almost nothing of interest in the table.
The reason this breaks down is that a fulltext index doesn't give any meaningful statistics back to the optimizer. It just says "yeah, I think that query should probably only require me to check 1 row" ... which, of course, pleases the optimizer greatly, so the fulltext index wins the bid for lowest cost, unless the index with the integer value also comes in comparably low or lower.
Still, that doesn't mean I wouldn't try it this way first.
There's another option, which would work best with fulltext queries IN BOOLEAN MODE and that is to create another column which you would populate with something like CONCAT('user_id_',user_id) or something similar, and then declare a 2-column fulltext index.
filter_string VARCHAR(48) # populated with CONCAT('user_id_',user_id);
....
FULLTEXT KEY (message,filter_string)
Then specify everything in the query.
SELECT ...
WHERE user_id = 500 AND
MATCH (message,filter_string) AGAINST ('+kittens +puppies +user_id_500' IN BOOLEAN MODE);
Now, the fulltext index will be responsible for matching only those rows where kittens, puppies, and "user_id_500" appears in the combined fulltext index of the two columns, but you'd still want to have the integer filter there too to make sure the final results are constrained in spite of any random appearance of "user_id_500" in the message.
You should add a fulltext index on message and a regular index on user_id, and use the query:
SELECT *
FROM messages
WHERE MATCH(message) AGAINST(#search_query)
AND user_id = #user_id;
You're right that you can't do option 3. But rather than trying to pick between 1 and 2, let MySQL do the work for you. MySQL will only use one of the two indexes, and will do a linear scan to complete the second filter, but it will estimate the effectiveness of each index and choose the optimal one.
Note: only do this if you can afford the overhead of two indexes (slower insert/update/delete). Also, if you know that each user will only have a few messages, then yes it might make sense to use a simple index and do a regex in the application layer or something like that.
Turn on the "Optimizer trace" and look for "considered_execution_plans". I contend that the Optimizer will always pick the FULLTEXT index, even when some other index might be better. This may be because it is quite costly when the MATCH is not pre-computed as when the FT index is built.
More on Optimizer Trace: http://mysql.rjweb.org/doc.php/index_cookbook_mysql#optimizer_trace (Earlier in that doc are my tips on FULLTEXT.)
So I have a table, possibly millions of rows long,
user | points
---------------
user1 | 10
user2 | 12
user3 | 7
...
and want to SELECT * FROM mytable ORDER BY points LIMIT 100, 1000
Now that works fine, but is horribly slow (on huge tables), since it refuses to use any kind of index, but performs a full table scan. How can I make this more efficient?
My first (obvious) idea was to use an index on points DESC, but then I figured out that MySQL does not support those at all.
Next, I tried to reverse the sign on points, meaning essentially having an ascending index on -points, this didnt help either, since it doesnt use the index for sorting
Lastly, I tried using force index, this yielded barely any performance improvement, since it still fetches the entire table, yet doesnt sort (using filesort: false in EXPLAIN)
I am sure this must be a solved problem, but I did not find any helpful information online. Any hints would be greatly appreciated.
Some ways to get better performance from a query.
Never never use SELECT *. It's a rookie mistake. It basically tells the query planner it needs to give you everything. Always enumerate the columns you want in the result set. This is the query you want (assuming you haven't oversimplified your question).
SELECT user, points
FROM table
ORDER BY points
LIMIT 100,1000
Use a compound index. In the case of your query, a compound index on (points, user) will allow the use of a partial index scan to satisfy your query. That should be faster than a full table sort. MySQL can scan indexes backward or forward, so you don't need to worry about descending order
To add the correct index use a command like this.
ALTER TABLE table ADD INDEX points_user (points, user);
Edit. The suggestion against using SELECT * here is based on (1) my unconfirmed suspicion that the table in question is oversimplified and has other columns in real life, and (2) the inconvenient reality that sometimes the index has to match the query precisely to get best performance results.
I stand by my opinion, based on experience, that using SELECT * in queries with performance sensitivity is not good engineering practice (unless you like the query so much you want to come back to it again and again).
In our application, we have a page that displays user a set of data, a part of it actually. It also allows user to order it by a custom field. So in the end it all comes down to query like this:
SELECT name, info, description FROM mytable
WHERE active = 1 -- Some filtering by indexed column
ORDER BY name LIMIT 0,50; -- Just a part of it
And this worked just fine, as long as the size of table is relatively small (used only locally in our department). But now we have to scale this application. And let's assume, the table has about a million of records (we expect that to happen soon). What will happen with ordering? Do I understand correctly, that in order to do this query, MySQL will have to sort a million records each time and give a part of it? This seems like a very resource-heavy operation.
My idea is simply to turn off that feature and don't let users select their custom ordering (maybe just filtering), so that the order would be a natural one (by id in descending order, I believe the indexing can handle that).
Or is there a way to make this query work much faster with ordering?
UPDATE:
Here is what I read from the official MySQL developer page.
In some cases, MySQL cannot use indexes to resolve the ORDER BY,
although it still uses indexes to find the rows that match the WHERE
clause. These cases include the following:
....
The key used to
fetch the rows is not the same as the one used in the ORDER BY:
SELECT * FROM t1 WHERE key2=constant ORDER BY key1;
So yes, it does seem like mysql will have a problem with such a query? So, what do I do - don't use an order part at all?
The 'problem' here seems to be that you have 2 requirements (in the example)
active = 1
order by name LIMIT 0, 50
The former you can easily solve by adding an index on the active field
The latter you can improve by adding an index on name
Since you do both in the same query, you'll need to combine this into an index that lets you resolve the active value quickly and then from there on fetches the first 50 names.
As such, I'd guess that something like this will help you out:
CREATE INDEX idx_test ON myTable (active, name)
(in theory, as always, try before you buy!)
Keep in mind though that there is no such a thing as a free lunch; you'll need to consider that adding an index also comes with downsides:
the index will make your INSERT/UPDATE/DELETE statements (slightly) slower, usually the effect is negligible but only testing will show
the index will require extra space in de database, think of it as an additional (hidden) special table sitting next to your actual data. The index will only hold the fields required + the PK of the originating table, which usually is a lot less data then the entire table, but for 'millions of rows' it can add up.
if your query selects one or more fields that are not part of the index, then the system will have to fetch the matching PK fields from the index first and then go look for the other fields in the actual table by means of the PK. This probably is still (a lot) faster than when not having the index, but keep this in mind when doing something like SELECT * FROM ... : do you really need all the fields?
In the example you use active and name but from the text I get that these might be 'dynamic' in which case you'd have to foresee all kinds of combinations. From a practical point this might not be feasible as each index will come with the downsides of above and each time you add an index you'll add supra to that list again (cumulative).
PS: I use PK for simplicity but in MSSQL it's actually the fields of the clustered index, which USUALLY is the same thing. I'm guessing MySQL works similarly.
Explain your query, and check, whether it goes for filesort,
If Order By doesnt get any index or if MYSQL optimizer prefers to avoid the existing index(es) for sorting, it goes with filesort.
Now, If you're getting filesort, then you should preferably either avoid ORDER BY or you should create appropriate index(es).
if the data is small enough, it does operations in Memory else it goes on the disk.
so you may try and change the variable < sort_buffer_size > as well.
there are always tradeoffs, one way to improve the preformance of order query is to set the buffersize and then the run the order by query which improvises the performance of the query
set sort_buffer_size=100000;
<>
If this size is further increased then the performance will start decreasing
I would like to make system whitch allows to search user messages, by specific user.
assume having folowing table
create table messages(
user_id int,
message nvarchar(500));
So what kind of index I should use here, if I want to search for all messages from user 1, containing word 'foo'.
Simple, non unique index user_id
It will filter only specific user messages nd then full scan for specific word.
FULLTEXT index on message
this will find all messages from all users and then filter by ID, seems to be very inefficient in case of big amount of users.
comopound index on both user_id and message
So full text index tree is created for each user separately, so they can be searched individually. During query system filters messages by ID and then performs text search on remaining rows in index.
A.F.A.I.K. last one is impossible. So then I assume I shall use 1-st option, It will perform better in case of few thousands of users?
And if each will have ~100 messages, full iteration won't cost much resources?
Perhaps I can include username into message and use BOOLEAN full text search mode, but I think it would be slower than by using indexed user_id.
#Alden Quimby's answer is correct as far as it goes, but there is more to the story, because MySQL will only try to choose the optimal index, and its ability to make that determination is limited because of the way fulltext indexes interact with the optimizer.
What actually happens is this:
If the specified user_id exists in either 0 or 1 matching rows in the table, the optimizer will realize this and will choose user_id as the index for that query. Fast execution.
Otherwise, the optimizer will choose the fulltext index, filtering every row matched by the fulltext index to eliminate rows not containing a user_id that matches the WHERE clause. Not quite as fast.
So it's not truly the "optimum" path. It's more like fulltext, with a nice optimization to avoid the fulltext search under the one condition that we know we have almost nothing of interest in the table.
The reason this breaks down is that a fulltext index doesn't give any meaningful statistics back to the optimizer. It just says "yeah, I think that query should probably only require me to check 1 row" ... which, of course, pleases the optimizer greatly, so the fulltext index wins the bid for lowest cost, unless the index with the integer value also comes in comparably low or lower.
Still, that doesn't mean I wouldn't try it this way first.
There's another option, which would work best with fulltext queries IN BOOLEAN MODE and that is to create another column which you would populate with something like CONCAT('user_id_',user_id) or something similar, and then declare a 2-column fulltext index.
filter_string VARCHAR(48) # populated with CONCAT('user_id_',user_id);
....
FULLTEXT KEY (message,filter_string)
Then specify everything in the query.
SELECT ...
WHERE user_id = 500 AND
MATCH (message,filter_string) AGAINST ('+kittens +puppies +user_id_500' IN BOOLEAN MODE);
Now, the fulltext index will be responsible for matching only those rows where kittens, puppies, and "user_id_500" appears in the combined fulltext index of the two columns, but you'd still want to have the integer filter there too to make sure the final results are constrained in spite of any random appearance of "user_id_500" in the message.
You should add a fulltext index on message and a regular index on user_id, and use the query:
SELECT *
FROM messages
WHERE MATCH(message) AGAINST(#search_query)
AND user_id = #user_id;
You're right that you can't do option 3. But rather than trying to pick between 1 and 2, let MySQL do the work for you. MySQL will only use one of the two indexes, and will do a linear scan to complete the second filter, but it will estimate the effectiveness of each index and choose the optimal one.
Note: only do this if you can afford the overhead of two indexes (slower insert/update/delete). Also, if you know that each user will only have a few messages, then yes it might make sense to use a simple index and do a regex in the application layer or something like that.
Turn on the "Optimizer trace" and look for "considered_execution_plans". I contend that the Optimizer will always pick the FULLTEXT index, even when some other index might be better. This may be because it is quite costly when the MATCH is not pre-computed as when the FT index is built.
More on Optimizer Trace: http://mysql.rjweb.org/doc.php/index_cookbook_mysql#optimizer_trace (Earlier in that doc are my tips on FULLTEXT.)
In my jsp application I have a search box that lets user to search for user names in the database. I send an ajax call on each keystroke and fetch 5 random names starting with the entered string.
I am using the below query:
select userid,name,pic from tbl_mst_users where name like 'queryStr%' order by rand() limit 5
But this is very slow as I have more than 2000 records in my table.
Is there any better approach which takes less time and let me achieve the same..? I need random values.
How slow is "very slow", in seconds?
The reason why your query could be slow is most likely that you didn't place an index on name. 2000 rows should be a piece of cake for MySQL to handle.
The other possible reason is that you have many columns in the SELECT clause. I assume in this case the MySQL engine first copies all this data to a temp table before sorting this large result set.
I advise the following, so that you work only with indexes, for as long as possible:
SELECT userid, name, pic
FROM tbl_mst_users
JOIN (
-- here, MySQL works on indexes only
SELECT userid
FROM tbl_mst_users
WHERE name LIKE 'queryStr%'
ORDER BY RAND() LIMIT 5
) AS sub USING(userid); -- join other columns only after picking the rows in the sub-query.
This method is a bit better, but still does not scale well. However, it should be sufficient for small tables (2000 rows is, indeed, small).
The link provided by #user1461434 is quite interesting. It describes a solution with almost constant performance. Only drawback is that it returns only one random row at a time.
does table has indexing on name?
if not apply it
2.MediaWiki uses an interesting trick (for Wikipedia's Special:Random feature): the table with the articles has an extra column with a random number (generated when the article is created). To get a random article, generate a random number and get the article with the next larger or smaller (don't recall which) value in the random number column. With an index, this can be very fast. (And MediaWiki is written in PHP and developed for MySQL.)
This approach can cause a problem if the resulting numbers are badly distributed; IIRC, this has been fixed on MediaWiki, so if you decide to do it this way you should take a look at the code to see how it's currently done (probably they periodically regenerate the random number column).
3.http://jan.kneschke.de/projects/mysql/order-by-rand/