I borrowed code from this github repo for training of a DenseNet-121 [https://github.com/gaetandi/cheXpert/blob/master/cheXpert_final.ipynb][1]
The github code is for 14 class classification on the CheXpert chest X-ray dataset. I've revised it for binary classification.
# initialize and load the model
pathModel = "/ds2/images/model_ones_2epoch_densenet.tar"#"m-epoch0-07032019-213933.pth.tar"
I initialize the 14 class model so I can use the pretrained weights:
model = DenseNet121(nnClassCount).cuda()
model = torch.nn.DataParallel(model).cuda()
modelCheckpoint = torch.load(pathModel)
model.load_state_dict(modelCheckpoint['state_dict'])
And then convert to binary classification:
nnClassCount = 1
model.module.densenet121.classifier = nn.Sequential(
nn.Linear(1024, nnClassCount),
nn.Sigmoid()
).cuda()
model = torch.nn.DataParallel(model).cuda()
And then train via:
batch, losst, losse = CheXpertTrainer.train(model, dataLoaderTrain, dataLoaderVal, nnClassCount, 100, timestampLaunch, checkpoint = None, weight_path = weight_path)
My training data is laid out in a 2 column csv with column headers ('Path' and 'Class-Positive'), with path locations in the first column and 0 or 1 in the second column. I used oversampling when compiling the training list so paths in the csv are roughly a 50/50 split between 0's and 1's...shuffled.
I use livelossplot to monitor training/validation loss and accuracy. My loss plots look as expected but accuracy plots are flatlined around 0.5 (which makes sense given the 50/50 data if the net is saying its 100% positive or negative). I'm assuming I'm doing something wrong in how I'm doing predictions, but maybe something in the training is incorrect.
For predictions and probabilities I'm running:
varOutput = model(varInput)
_, preds = torch.max(varOutput, 1)
print('varshape: ',varOutput.shape)
probs = torch.sigmoid(varOutput)
*My issue: preds are all coming out as 0 and probs all above 0.5 *
Here is the initial code from github:
import os
import numpy as np
import time
import sys
import csv
import cv2
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
import torch.nn.functional as tfunc
from torch.utils.data import Dataset
from torch.utils.data.dataset import random_split
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
from PIL import Image
import torch.nn.functional as func
from sklearn.metrics.ranking import roc_auc_score
import sklearn.metrics as metrics
import random
use_gpu = torch.cuda.is_available()
# Paths to the files with training, and validation sets.
# Each file contains pairs (path to image, output vector)
pathFileTrain = '../CheXpert-v1.0-small/train.csv'
pathFileValid = '../CheXpert-v1.0-small/valid.csv'
# Neural network parameters:
nnIsTrained = False #pre-trained using ImageNet
nnClassCount = 14 #dimension of the output
# Training settings: batch size, maximum number of epochs
trBatchSize = 64
trMaxEpoch = 3
# Parameters related to image transforms: size of the down-scaled image, cropped image
imgtransResize = (320, 320)
imgtransCrop = 224
# Class names
class_names = ['No Finding', 'Enlarged Cardiomediastinum', 'Cardiomegaly', 'Lung Opacity',
'Lung Lesion', 'Edema', 'Consolidation', 'Pneumonia', 'Atelectasis', 'Pneumothorax',
'Pleural Effusion', 'Pleural Other', 'Fracture', 'Support Devices']
class CheXpertDataSet(Dataset):
def __init__(self, image_list_file, transform=None, policy="ones"):
"""
image_list_file: path to the file containing images with corresponding labels.
transform: optional transform to be applied on a sample.
Upolicy: name the policy with regard to the uncertain labels
"""
image_names = []
labels = []
with open(image_list_file, "r") as f:
csvReader = csv.reader(f)
next(csvReader, None)
k=0
for line in csvReader:
k+=1
image_name= line[0]
label = line[5:]
for i in range(14):
if label[i]:
a = float(label[i])
if a == 1:
label[i] = 1
elif a == -1:
if policy == "ones":
label[i] = 1
elif policy == "zeroes":
label[i] = 0
else:
label[i] = 0
else:
label[i] = 0
else:
label[i] = 0
image_names.append('../' + image_name)
labels.append(label)
self.image_names = image_names
self.labels = labels
self.transform = transform
def __getitem__(self, index):
"""Take the index of item and returns the image and its labels"""
image_name = self.image_names[index]
image = Image.open(image_name).convert('RGB')
label = self.labels[index]
if self.transform is not None:
image = self.transform(image)
return image, torch.FloatTensor(label)
def __len__(self):
return len(self.image_names)
#TRANSFORM DATA
normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
transformList = []
#transformList.append(transforms.Resize(imgtransCrop))
transformList.append(transforms.RandomResizedCrop(imgtransCrop))
transformList.append(transforms.RandomHorizontalFlip())
transformList.append(transforms.ToTensor())
transformList.append(normalize)
transformSequence=transforms.Compose(transformList)
#LOAD DATASET
dataset = CheXpertDataSet(pathFileTrain ,transformSequence, policy="ones")
datasetTest, datasetTrain = random_split(dataset, [500, len(dataset) - 500])
datasetValid = CheXpertDataSet(pathFileValid, transformSequence)
#Problèmes de l'overlapping de patients et du transform identique ?
dataLoaderTrain = DataLoader(dataset=datasetTrain, batch_size=trBatchSize, shuffle=True, num_workers=24, pin_memory=True)
dataLoaderVal = DataLoader(dataset=datasetValid, batch_size=trBatchSize, shuffle=False, num_workers=24, pin_memory=True)
dataLoaderTest = DataLoader(dataset=datasetTest, num_workers=24, pin_memory=True)
class CheXpertTrainer():
def train (model, dataLoaderTrain, dataLoaderVal, nnClassCount, trMaxEpoch, launchTimestamp, checkpoint):
#SETTINGS: OPTIMIZER & SCHEDULER
optimizer = optim.Adam (model.parameters(), lr=0.0001, betas=(0.9, 0.999), eps=1e-08, weight_decay=1e-5)
#SETTINGS: LOSS
loss = torch.nn.BCELoss(size_average = True)
#LOAD CHECKPOINT
if checkpoint != None and use_gpu:
modelCheckpoint = torch.load(checkpoint)
model.load_state_dict(modelCheckpoint['state_dict'])
optimizer.load_state_dict(modelCheckpoint['optimizer'])
#TRAIN THE NETWORK
lossMIN = 100000
for epochID in range(0, trMaxEpoch):
timestampTime = time.strftime("%H%M%S")
timestampDate = time.strftime("%d%m%Y")
timestampSTART = timestampDate + '-' + timestampTime
batchs, losst, losse = CheXpertTrainer.epochTrain(model, dataLoaderTrain, optimizer, trMaxEpoch, nnClassCount, loss)
lossVal = CheXpertTrainer.epochVal(model, dataLoaderVal, optimizer, trMaxEpoch, nnClassCount, loss)
timestampTime = time.strftime("%H%M%S")
timestampDate = time.strftime("%d%m%Y")
timestampEND = timestampDate + '-' + timestampTime
if lossVal < lossMIN:
lossMIN = lossVal
torch.save({'epoch': epochID + 1, 'state_dict': model.state_dict(), 'best_loss': lossMIN, 'optimizer' : optimizer.state_dict()}, 'm-epoch'+str(epochID)+'-' + launchTimestamp + '.pth.tar')
print ('Epoch [' + str(epochID + 1) + '] [save] [' + timestampEND + '] loss= ' + str(lossVal))
else:
print ('Epoch [' + str(epochID + 1) + '] [----] [' + timestampEND + '] loss= ' + str(lossVal))
return batchs, losst, losse
#--------------------------------------------------------------------------------
def epochTrain(model, dataLoader, optimizer, epochMax, classCount, loss):
batch = []
losstrain = []
losseval = []
model.train()
for batchID, (varInput, target) in enumerate(dataLoaderTrain):
varTarget = target.cuda(non_blocking = True)
#varTarget = target.cuda()
varOutput = model(varInput)
lossvalue = loss(varOutput, varTarget)
optimizer.zero_grad()
lossvalue.backward()
optimizer.step()
l = lossvalue.item()
losstrain.append(l)
if batchID%35==0:
print(batchID//35, "% batches computed")
#Fill three arrays to see the evolution of the loss
batch.append(batchID)
le = CheXpertTrainer.epochVal(model, dataLoaderVal, optimizer, trMaxEpoch, nnClassCount, loss).item()
losseval.append(le)
print(batchID)
print(l)
print(le)
return batch, losstrain, losseval
#--------------------------------------------------------------------------------
def epochVal(model, dataLoader, optimizer, epochMax, classCount, loss):
model.eval()
lossVal = 0
lossValNorm = 0
with torch.no_grad():
for i, (varInput, target) in enumerate(dataLoaderVal):
target = target.cuda(non_blocking = True)
varOutput = model(varInput)
losstensor = loss(varOutput, target)
lossVal += losstensor
lossValNorm += 1
outLoss = lossVal / lossValNorm
return outLoss
#--------------------------------------------------------------------------------
#---- Computes area under ROC curve
#---- dataGT - ground truth data
#---- dataPRED - predicted data
#---- classCount - number of classes
def computeAUROC (dataGT, dataPRED, classCount):
outAUROC = []
datanpGT = dataGT.cpu().numpy()
datanpPRED = dataPRED.cpu().numpy()
for i in range(classCount):
try:
outAUROC.append(roc_auc_score(datanpGT[:, i], datanpPRED[:, i]))
except ValueError:
pass
return outAUROC
#--------------------------------------------------------------------------------
def test(model, dataLoaderTest, nnClassCount, checkpoint, class_names):
cudnn.benchmark = True
if checkpoint != None and use_gpu:
modelCheckpoint = torch.load(checkpoint)
model.load_state_dict(modelCheckpoint['state_dict'])
if use_gpu:
outGT = torch.FloatTensor().cuda()
outPRED = torch.FloatTensor().cuda()
else:
outGT = torch.FloatTensor()
outPRED = torch.FloatTensor()
model.eval()
with torch.no_grad():
for i, (input, target) in enumerate(dataLoaderTest):
target = target.cuda()
outGT = torch.cat((outGT, target), 0).cuda()
bs, c, h, w = input.size()
varInput = input.view(-1, c, h, w)
out = model(varInput)
outPRED = torch.cat((outPRED, out), 0)
aurocIndividual = CheXpertTrainer.computeAUROC(outGT, outPRED, nnClassCount)
aurocMean = np.array(aurocIndividual).mean()
print ('AUROC mean ', aurocMean)
for i in range (0, len(aurocIndividual)):
print (class_names[i], ' ', aurocIndividual[i])
return outGT, outPRED
class DenseNet121(nn.Module):
"""Model modified.
The architecture of our model is the same as standard DenseNet121
except the classifier layer which has an additional sigmoid function.
"""
def __init__(self, out_size):
super(DenseNet121, self).__init__()
self.densenet121 = torchvision.models.densenet121(pretrained=True)
num_ftrs = self.densenet121.classifier.in_features
self.densenet121.classifier = nn.Sequential(
nn.Linear(num_ftrs, out_size),
nn.Sigmoid()
)
def forward(self, x):
x = self.densenet121(x)
return x
# initialize and load the model
model = DenseNet121(nnClassCount).cuda()
model = torch.nn.DataParallel(model).cuda()
timestampTime = time.strftime("%H%M%S")
timestampDate = time.strftime("%d%m%Y")
timestampLaunch = timestampDate + '-' + timestampTime
batch, losst, losse = CheXpertTrainer.train(model, dataLoaderTrain, dataLoaderVal, nnClassCount, trMaxEpoch, timestampLaunch, checkpoint = None)
print("Model trained")
It looks like you have adapted the training correctly for the binary classification, but the prediction wasn't, as you are still trying it as if it were a multi-class prediction.
The output of your model (varOutput) has the size (batch_size, 1), since there is only one class. The maximum across that dimension will always be 0, since that is the only class available, there is no separate class for 1.
This single class represents both cases (0 and 1), so you can consider it is a the probability of it being positive (1). To get the distinct value of either 0 or 1, you simply use a threshold of 0.5, so everything below that receives the class 0 and above that 1. This can be easily done with torch.round.
But you also have another problem, you're applying the sigmoid function twice in a row, once in the classifier nn.Sigmoid() and then afterwards again torch.sigmoid(varOutput). That is problematic, because sigmoid(0) = 0.5, hence all your probabilities are over 0.5.
The output of your model are already the probabilities, the only thing left is to round them:
probs = model(varInput)
# The .squeeze(1) is to get rid of the singular class dimension
preds = torch.round(probs).squeeze(1)
Related
I've been trying to plot a confusion matrix for the below code - check def train_alexnet(). But I keep getting this error:
IndexError: only integers, slices (`:`), ellipsis (`...`), None and long or byte Variables are valid indices (got float)
So, I tried converting my tensors to an integer tensor but then got the error:
ValueError: only one element tensors can be converted to Python scalars
Can someone suggest me what can be done to convert the tensors 'all_preds' and 'source_value' to tensors containing integer values? I found the torch no grad option but I am unaware as to how to use it because I'm new to pytorch.
Here's the link of the github repo that I'm trying to work with: https://github.com/syorami/DDC-transfer-learning/blob/master/DDC.py
from __future__ import print_function
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import warnings
warnings.filterwarnings('ignore')
import math
import model
import torch
import dataloader
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.metrics import confusion_matrix
from plotcm import plot_confusion_matrix
from torch import nn
from torch import optim
from torch.autograd import Variable
cuda = torch.cuda.is_available()
def step_decay(epoch, learning_rate):
# learning rate step decay
# :param epoch: current training epoch
# :param learning_rate: initial learning rate
# :return: learning rate after step decay
initial_lrate = learning_rate
drop = 0.8
epochs_drop = 10.0
lrate = initial_lrate * math.pow(drop, math.floor((1 + epoch) / epochs_drop))
return lrate
def train_alexnet(epoch, model, learning_rate, source_loader):
# train source on alexnet
# :param epoch: current training epoch
# :param model: defined alexnet
# :param learning_rate: initial learning rate
# :param source_loader: source loader
# :return:
log_interval = 10
LEARNING_RATE = step_decay(epoch, learning_rate)
print(f'Learning Rate: {LEARNING_RATE}')
optimizer = optim.SGD([
{'params': model.features.parameters()},
{'params': model.classifier.parameters()},
{'params': model.final_classifier.parameters(), 'lr': LEARNING_RATE}
], lr=LEARNING_RATE / 10, momentum=MOMENTUM, weight_decay=L2_DECAY)
# enter training mode
model.train()
iter_source = iter(source_loader)
num_iter = len(source_loader)
correct = 0
total_loss = 0
clf_criterion = nn.CrossEntropyLoss()
all_preds = torch.tensor([])
source_value = torch.tensor([])
for i in range(1, num_iter):
source_data, source_label = iter_source.next()
# print("source label: ", source_label)
if cuda:
source_data, source_label = source_data.cuda(), source_label.cuda()
source_data, source_label = Variable(source_data), Variable(source_label)
optimizer.zero_grad()
##
source_preds = model(source_data)
preds = source_preds.data.max(1, keepdim=True)[1]
correct += preds.eq(source_label.data.view_as(preds)).sum()
#prediction label
all_preds = torch.cat(
(all_preds, preds)
,dim=0
)
#actual label
source_value = torch.cat(
(source_value,source_label)
,dim=0
)
loss = clf_criterion(source_preds, source_label)
total_loss += loss
loss.backward()
optimizer.step()
if i % log_interval == 0:
print('Train Epoch {}: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, i * len(source_data), len(source_loader) * BATCH_SIZE,
100. * i / len(source_loader), loss.item()))
total_loss /= len(source_loader)
acc_train = float(correct) * 100. / (len(source_loader) * BATCH_SIZE)
# print('all preds= ',int(all_preds))
# print("source value", int(source_value))
stacked = torch.stack(
(
source_value
,(all_preds.argmax(dim=1))
)
,dim=1
)
print("stacked",stacked)
cmt = torch.zeros(3
,3, dtype=torch.float64)
with torch.no_grad():
for p in stacked:
tl, pl = p.tolist()
cmt[tl, pl] = cmt[tl, pl] + 1
print("cmt: ",cmt)
print('{} set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)'.format(
SOURCE_NAME, total_loss.item(), correct, len(source_loader.dataset), acc_train))
def test_alexnet(model, target_loader):
# test target data on fine-tuned alexnet
# :param model: trained alexnet on source data set
# :param target_loader: target dataloader
# :return: correct num
# enter evaluation mode
clf_criterion = nn.CrossEntropyLoss()
model.eval()
test_loss = 0
correct = 0
for data, target in target_test_loader:
if cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
target_preds = model(data)
test_loss += clf_criterion(target_preds, target) # sum up batch loss
pred = target_preds.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
stacked = torch.stack(
(
target
,target_preds.argmax(dim=1)
)
,dim=1
)
print("stacked target",stacked)
test_loss /= len(target_loader)
print('{} set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
TARGET_NAME, test_loss.item(), correct, len(target_loader.dataset),
100. * correct / len(target_loader.dataset)))
return correct
def compute_confusion_matrix(preds, y):
#round predictions to the closest integer
rounded_preds = torch.round(torch.sigmoid(preds))
return confusion_matrix(y, rounded_preds)
if __name__ == '__main__':
ROOT_PATH = './v1234_combined/pets'
SOURCE_NAME = 'v123'
TARGET_NAME = 'v4'
BATCH_SIZE = 15
TRAIN_EPOCHS = 1
learning_rate = 1e-2
L2_DECAY = 5e-4
MOMENTUM = 0.9
source_loader = dataloader.load_training(ROOT_PATH, SOURCE_NAME, BATCH_SIZE)
#target_train_loader = dataloader.load_training(ROOT_PATH, TARGET_NAME, BATCH_SIZE)
target_test_loader = dataloader.load_testing(ROOT_PATH, TARGET_NAME, BATCH_SIZE)
print('Load data complete')
alexnet = model.Alexnet_finetune(num_classes=3)
print('Construct model complete')
# load pretrained alexnet model
alexnet = model.load_pretrained_alexnet(alexnet)
print('Load pretrained alexnet parameters complete\n')
if cuda: alexnet.cuda()
for epoch in range(1, TRAIN_EPOCHS + 1):
print(f'Train Epoch {epoch}:')
train_alexnet(epoch, alexnet, learning_rate, source_loader)
correct = test_alexnet(alexnet, target_test_loader)
print(len(source_loader.dataset))
In oder to conver all elements of a tensor from floats to ints, you need to use .to():
all_preds_int = all_preds.to(torch.int64)
Note that it appears as if your all_preds are the predicted class probabilities and not the actual labels. You might need to torch.argmax along the appropriate dimension. (BTW, the output of argmax is int - no need to convert).
Hello guys I've joined a university-level image recognition competition.
In the test, they will give two images (people face) and my model need to detect pair of the image is the same person or not
My model is resnet18 with IR block and SE block. and it will use Arcface loss.
I can use only the MS1M dataset with a total of 86876 classes
The problem is that loss is getting better, but accuracy is 0 and not changing.
Here's part of code I'm working on.
Train
def train_model(model, net, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
for phase in ['train']:
if phase == 'train':
model.train() # Set model to training mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in notebook.tqdm(dataloader):
inputs = inputs.to(device)
labels = labels.to(device).long()
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
features = model(inputs)
outputs = net(features, labels)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / len(dataloader)
epoch_acc = running_corrects.double() / len(dataloader)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'train' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
torch.save({'epoch': epoch,
'mode_state_dict': model.state_dict(),
'fc_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler': scheduler.state_dict(), # HERE IS THE CHANGE
}, f'/content/drive/MyDrive/inha_data/training_saver/training_stat{epoch}.pth')
print(f'finished {epoch} and saved model_save_{epoch}.pt')
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best train Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
torch.save(model.state_dict(), 'model_save.pt')
return model
Parameters
train_dataset = MS1MDataset('train')
dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True,num_workers=4)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 디바이스 설정
num_classes = 86876
# normal classifier
# net = nn.Sequential(nn.Linear(512, num_classes))
# Feature extractor backbone, input is 112x112 image output is 512 feature vector
model_ft = resnet18(True)
#set metric
metric_fc = metrics.ArcMarginProduct(512, num_classes, s = 30.0, m = 0.50, easy_margin = False)
metric_fc.to(device)
# net = net.to(device)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = torch.optim.Adam([{'params': model_ft.parameters()}, {'params': metric_fc.parameters()}],
lr=0.1)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=4, gamma=0.1)
Arcface
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
import math
class ArcMarginProduct(nn.Module):
r"""Implement of large margin arc distance: :
Args:
in_features: size of each input sample
out_features: size of each output sample
s: norm of input feature
m: margin
cos(theta + m)
"""
def __init__(self, in_features, out_features, s=30.0, m=0.50, easy_margin=False):
super(ArcMarginProduct, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.s = s
self.m = m
self.weight = Parameter(torch.FloatTensor(out_features, in_features))
nn.init.xavier_uniform_(self.weight)
self.easy_margin = easy_margin
self.cos_m = math.cos(m)
self.sin_m = math.sin(m)
self.th = math.cos(math.pi - m)
self.mm = math.sin(math.pi - m) * m
def forward(self, input, label):
# --------------------------- cos(theta) & phi(theta) ---------------------------
cosine = F.linear(F.normalize(input), F.normalize(self.weight))
sine = torch.sqrt((1.0 - torch.pow(cosine, 2)).clamp(0, 1))
phi = cosine * self.cos_m - sine * self.sin_m
if self.easy_margin:
phi = torch.where(cosine > 0, phi, cosine)
else:
phi = torch.where(cosine > self.th, phi, cosine - self.mm)
# --------------------------- convert label to one-hot ---------------------------
# one_hot = torch.zeros(cosine.size(), requires_grad=True, device='cuda')
one_hot = torch.zeros(cosine.size(), device='cuda')
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
# -------------torch.where(out_i = {x_i if condition_i else y_i) -------------
output = (one_hot * phi) + ((1.0 - one_hot) * cosine) # you can use torch.where if your torch.__version__ is 0.4
output *= self.s
# print(output)
return output
dataset
data_transforms = {
'train': transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.125, contrast=0.125, saturation=0.125),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
#train_ms1_data = torchvision.datasets.ImageFolder('/content/drive/MyDrive/inha_data/train', transform = data_transforms)
class MS1MDataset(Dataset):
def __init__(self,split):
self.file_list = '/content/drive/MyDrive/inha_data/ID_List.txt'
self.images = []
self.labels = []
self.transformer = data_transforms['train']
with open(self.file_list) as f:
files = f.read().splitlines()
for i, fi in enumerate(files):
fi = fi.split()
image = "/content/" + fi[1]
label = int(fi[0])
self.images.append(image)
self.labels.append(label)
def __getitem__(self, index):
img = Image.open(self.images[index])
img = self.transformer(img)
label = self.labels[index]
return img, label
def __len__(self):
return len(self.images)
You can try to use a smaller m in ArcFace, even a minus value.
I'm finding a hardtime figuring out how to correctly define a mxnet net so that i can serialize/convert this model to a json file.
The pipeline is composed of a CNN + biLSTM + CTC.
I now i must use HybridBlock and hybridize() but i can't seem to make it work or if its even possible or if there is any other way around.
I'm sure its lack of knowledge on my part and wonder is anyone can help.
Here is the net definition in python:
NUM_HIDDEN = 200
NUM_CLASSES = 13550
NUM_LSTM_LAYER = 1
p_dropout = 0.5
SEQ_LEN = 32
def get_featurizer():
featurizer = gluon.nn.HybridSequential()
# conv layer
featurizer.add(gluon.nn.Conv2D(kernel_size=(3,3), padding=(1,1), channels=32, activation="relu"))
featurizer.add(gluon.nn.BatchNorm())
....
featurizer.hybridize()
return featurizer
class EncoderLayer(gluon.Block):
def __init__(self, **kwargs):
super(EncoderLayer, self).__init__(**kwargs)
with self.name_scope():
self.lstm = mx.gluon.rnn.LSTM(NUM_HIDDEN, NUM_LSTM_LAYER, bidirectional=True)
def forward(self, x):
x = x.transpose((0,3,1,2))
x = x.flatten()
x = x.split(num_outputs=SEQ_LEN, axis = 1) # (SEQ_LEN, N, CHANNELS)
x = nd.concat(*[elem.expand_dims(axis=0) for elem in x], dim=0)
x = self.lstm(x)
x = x.transpose((1, 0, 2)) # (N, SEQ_LEN, HIDDEN_UNITS)
return x
def get_encoder():
encoder = gluon.nn.Sequential()
encoder.add(EncoderLayer())
encoder.add(gluon.nn.Dropout(p_dropout))
return encoder
def get_decoder():
decoder = mx.gluon.nn.Dense(units=ALPHABET_SIZE, flatten=False)
decoder.hybridize()
return decoder
def get_net():
net = gluon.nn.Sequential()
with net.name_scope():
net.add(get_featurizer())
net.add(get_encoder())
net.add(get_decoder())
return net
Any help would be highly appreciated.
Thank you very much.
There are few requirements for a model in Gluon to be exportable to json:
It needs to be hybridizable, meaning that each children block should be hybridizable as well and the model works in both modes
All parameters should be initialized. Since Gluon uses deferred parameter initialization, that means that you should do forward pass at least once before you can save the model.
I did some fixes for your code also introducing new constants when I needed. The most significant changes are:
Don't use split if you can avoid it, because it returns list of NDArrays. Use reshape, which works seemlessly with Symbol as well.
Starting from 1.3.0 version of MXNet, LSTM is also hybridizable, so you can wrap it in a HybridBlock instead of just a Block.
Use HybridSequential.
Here is the adjusted code with an example at the bottom how to save the model and how to load it back. You can find more information in this tutorial.
import mxnet as mx
from mxnet import gluon
from mxnet import nd
BATCH_SIZE = 1
CHANNELS = 100
ALPHABET_SIZE = 1000
NUM_HIDDEN = 200
NUM_CLASSES = 13550
NUM_LSTM_LAYER = 1
p_dropout = 0.5
SEQ_LEN = 32
HEIGHT = 100
WIDTH = 100
def get_featurizer():
featurizer = gluon.nn.HybridSequential()
featurizer.add(
gluon.nn.Conv2D(kernel_size=(3, 3), padding=(1, 1), channels=32, activation="relu"))
featurizer.add(gluon.nn.BatchNorm())
return featurizer
class EncoderLayer(gluon.HybridBlock):
def __init__(self, **kwargs):
super(EncoderLayer, self).__init__(**kwargs)
with self.name_scope():
self.lstm = mx.gluon.rnn.LSTM(NUM_HIDDEN, NUM_LSTM_LAYER, bidirectional=True)
def hybrid_forward(self, F, x):
x = x.transpose((0, 3, 1, 2))
x = x.flatten()
x = x.reshape(shape=(SEQ_LEN, -1, CHANNELS)) #x.split(num_outputs=SEQ_LEN, axis=1) # (SEQ_LEN, N, CHANNELS)
x = self.lstm(x)
x = x.transpose((1, 0, 2)) # (N, SEQ_LEN, HIDDEN_UNITS)
return x
def get_encoder():
encoder = gluon.nn.HybridSequential()
encoder.add(EncoderLayer())
encoder.add(gluon.nn.Dropout(p_dropout))
return encoder
def get_decoder():
decoder = mx.gluon.nn.Dense(units=ALPHABET_SIZE, flatten=False)
return decoder
def get_net():
net = gluon.nn.HybridSequential()
with net.name_scope():
net.add(get_featurizer())
net.add(get_encoder())
net.add(get_decoder())
return net
if __name__ == '__main__':
net = get_net()
net.initialize()
net.hybridize()
fake_data = mx.random.uniform(shape=(BATCH_SIZE, HEIGHT, WIDTH, CHANNELS))
out = net(fake_data)
net.export("mymodel")
deserialized_net = gluon.nn.SymbolBlock.imports("mymodel-symbol.json", ['data'],
"mymodel-0000.params", ctx=mx.cpu())
out2 = deserialized_net(fake_data)
# just to check that we get the same results
assert (out - out2).sum().asscalar() == 0
The Sklearn documentation contains an example of a polynomial regression which beautifully illustrates the idea of overfitting (link).
The third plot shows a 15th order polynomial that overfits the simulated data. I replicated this model in TensorFlow, but I cannot get it to overfit.
Even when tuning the learning rate and the numbers of learning epochs, I cannot get the model to overfit. What am I missing?
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def true_fun(X):
return np.cos(1.5 * np.pi * X)
# Generate dataset
n_samples = 30
np.random.seed(0)
x_train = np.sort(np.random.rand(n_samples)) # Draw from uniform distribution
y_train = true_fun(x_train) + np.random.randn(n_samples) * 0.1
x_test = np.linspace(0, 1, 100)
y_true = true_fun(x_test)
# Helper function
def run_dir(base_dir, dirname='run'):
"Number log directories incrementally"
import os
import re
pattern = re.compile(dirname+'_(\d+)')
try:
previous_runs = os.listdir(base_dir)
except FileNotFoundError:
previous_runs = []
run_number = 0
for name in previous_runs:
match = pattern.search(name)
if match:
number = int(match.group(1))
if number > run_number:
run_number = number
run_number += 1
logdir = os.path.join(base_dir, dirname + '_%02d' % run_number)
return(logdir)
# Define the polynomial model
def model(X, w):
"""Polynomial model
param X: data
param y: coeficients in the polynomial regression
returns: Polynomial function Y(X, w)
"""
terms = []
for i in range(int(w.shape[0])):
term = tf.multiply(w[i], tf.pow(X, i))
terms.append(term)
return(tf.add_n(terms))
# Create the computation graph
order = 15
tf.reset_default_graph()
X = tf.placeholder("float")
Y = tf.placeholder("float")
w = tf.Variable([0.]*order, name="parameters")
lambda_reg = tf.placeholder('float', shape=[])
learning_rate_ph = tf.placeholder('float', shape=[])
y_model = model(X, w)
loss = tf.div(tf.reduce_mean(tf.square(Y-y_model)), 2) # Square error
loss_rg = tf.multiply(lambda_reg, tf.reduce_sum(tf.square(w))) # L2 pentalty
loss_total = tf.add(loss, loss_rg)
loss_hist1 = tf.summary.scalar('loss', loss)
loss_hist2 = tf.summary.scalar('loss_rg', loss_rg)
loss_hist3 = tf.summary.scalar('loss_total', loss_total)
summary = tf.summary.merge([loss_hist1, loss_hist2, loss_hist3])
train_op = tf.train.GradientDescentOptimizer(learning_rate_ph).minimize(loss_total)
init = tf.global_variables_initializer()
def train(sess, x_train, y_train, lambda_val=0, epochs=2000, learning_rate=0.01):
feed_dict={X: x_train, Y: y_train, lambda_reg: lambda_val, learning_rate_ph: learning_rate}
logdir = run_dir("logs/polynomial_regression2/")
writer = tf.summary.FileWriter(logdir)
sess.run(init)
for epoch in range(epochs):
_, summary_str = sess.run([train_op, summary], feed_dict=feed_dict)
writer.add_summary(summary_str, global_step=epoch)
final_cost, final_cost_rg, w_learned = sess.run([loss, loss_rg, w], feed_dict=feed_dict)
return final_cost, final_cost_rg, w_learned
def plot_test(w_learned, x_test, x_train, y_train):
y_learned = calculate_y(x_test, w_learned)
plt.scatter(x_train, y_train)
plt.plot(x_test, y_true, label="true function")
plt.plot(x_test, y_learned,'r', label="learned function")
#plt.title('$\lambda = {:03.2f}$'.format(lambda_values[i]))
plt.ylabel('y')
plt.xlabel('x')
plt.legend()
plt.show()
def calculate_y(x, w):
y = 0
for i in range(w.shape[0]):
y += w[i] * np.power(x, i)
return y
sess = tf.Session()
final_cost, final_cost_rg, w_learned = train(sess, x_train, y_train, lambda_val=0,
learning_rate=0.3, epochs=2000)
sess.close()
plot_test(w_learned, x_test, x_train, y_train)
I have same problem about this. When I do polynomial regression, I also can't overfit the data by using GD in Tensorflow.
Then I compare the coefficients(weights) of the model by using sklearn LinearRegression, I found when the polynomial degree is larger the coefficient of high order is very smaller(i.e. 1e-4), and the low order is relative large(i.e. 0.1).
That's mean when you using GD algorithm for searching the best value of weights, the high order coefficient become extreme sensitive about the value change, and the low order coefficient is not.
And I guess the best coefficient(overfit with data) of low order term is large, and of high order term is tiny. When you set large learning rate, it's impossible to find the right answer, and when you set tiny learning rate, you need lots of iterations.
It's obvious when you using GD algorithm with small data set to make overfit.
I want to create a simple autoencoder with 3000 input, 2 hidden and 3000 output neurons:
def build_autoencoder(input_var=None):
l_in = InputLayer(shape=(None,3000), input_var=input_var)
l_hid = DenseLayer(
l_in, num_units=2,
nonlinearity=rectify,
W=lasagne.init.GlorotUniform())
l_out = DenseLayer(
l_hid, num_units=3000,
nonlinearity=softmax)
return l_out
The shape of the training data is as follows:
train.shape = (3000,3)
This is input, target and loss function definition:
import sys
import os
import time
import numpy as np
import theano
import theano.tensor as T
import lasagne
from lasagne.updates import rmsprop
from lasagne.layers import DenseLayer, DropoutLayer, InputLayer
from lasagne.nonlinearities import rectify, softmax
from lasagne.objectives import categorical_crossentropy
# Creating the Theano variables
input_var = T.dmatrix('inputs')
target_var = T.dmatrix('targets')
# Building the Theano expressions on these variables
network = build_autoencoder(input_var)
prediction = lasagne.layers.get_output(network)
loss = categorical_crossentropy(prediction, target_var)
loss = loss.mean()
test_prediction = lasagne.layers.get_output(network,
deterministic=True)
test_loss = categorical_crossentropy(test_prediction, target_var)
test_loss = test_loss.mean()
test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var),
dtype=theano.config.floatX)
I'm just running one epoch but get an error:
params = lasagne.layers.get_all_params(network, trainable=True)
updates = rmsprop(loss, params, learning_rate=0.001)
# Compiling the graph by declaring the Theano functions
train_fn = theano.function([input_var, target_var],
loss, updates=updates)
val_fn = theano.function([input_var, target_var],
[test_loss, test_acc])
# For loop that goes each time through the hole training
# and validation data
print("Starting training...")
for epoch in range(1):
# Going over the training data
train_err = 0
train_batches = 0
start_time = time.time()
print 'test1'
train_err += train_fn(train, train)
train_batches += 1
# Going over the validation data
val_err = 0
val_acc = 0
val_batches = 0
err, acc = val_fn(train, train)
val_err += err
val_acc += acc
val_batches += 1
# Then we print the results for this epoch:
print("Epoch {} of {} took {:.3f}s".format(epoch + 1, num_epochs, time.time() - start_time))
print("training loss:\t\t{:.6f}".format(train_err / train_batches))
print("validation loss:\t\t{:.6f}".format(val_err / val_batches))
print("validation accuracy:\t\t{:.2f} %".format(val_acc / val_batches * 100))
This is the error:
ValueError: ('shapes (3000,3) and (3000,2) not aligned: 3 (dim 1) !=
3000 (dim 0)', (3000, 3), (3000, 2)) Apply node that caused the error:
Dot22(inputs, W) Toposort index: 3 Inputs types: [TensorType(float64,
matrix), TensorType(float64, matrix)] Inputs shapes: [(3000, 3),
(3000, 2)] Inputs strides: [(24, 8), (16, 8)] Inputs values: ['not
shown', 'not shown'] Outputs clients:
[[Elemwise{add,no_inplace}(Dot22.0, InplaceDimShuffle{x,0}.0),
Elemwise{Composite{(i0 * (Abs(i1) + i2 + i3))}}[(0,
2)](TensorConstant{(1, 1) of 0.5}, Elemwise{add,no_inplace}.0,
Dot22.0, InplaceDimShuffle{x,0}.0)]]
To me it seems that the bottleneck of the auto encoder is the problem. Any ideas?
Just got some help from my IBM college (Erwan), I've posted the working solution to this GIST, the relevant sections are these ones:
First, get the shape of the training data correct:
train.shape = (3, 3000)
Then use the same shape on the InputLayer:
def build_autoencoder(input_var=None):
l_in = InputLayer(shape=(3, 3000), input_var=input_var)
l_hid = DenseLayer(
l_in, num_units=2,
nonlinearity=rectify,
W=lasagne.init.GlorotUniform())
l_out = DenseLayer(
l_hid, num_units=3000,
nonlinearity=softmax)
return l_out
So this is solved, next problem is getting a descending cost during training, but this is another topic :)