I wrote my very first octave script which is a code for the incremental search method for root finding but I encountered numerous errors that I found hard to understand.
The following is the script:
clear
syms x;
fct=input('enter your function in standard form: ');
f=str2func(fct); % This built in octave function creates functions from strings
Xmax=input('X maximum= ');
Xinit=input('X initial= ');
dx=input('dx= ');
epsi=input('epsi= ');
N=10; % the amount by which dx is decreased in case a root was found.
while (x<=Xmax)
f1=f(Xinit);
x=x+dx
f2=f(x);
if (abs(f2)>(1/epsi))
disp('The function approches infinity at ', num2str(x));
x=x+epsi;
else
if ((f2*f1)>0)
x=x+dx;
elseif ((f2*f1)==0)
disp('a root at ', num2str );
x=x+epsi;
else
if (dx < epsi)
disp('a root at ', num2str);
x=x+epsi;
else
x=x-dx;
dx=dx/N;
x=x+dx;
end
end
end
end
when running it the following errors showed up:
>> Incremental
enter your function in standard form: 1+(5.25*x)-(sec(sqrt(0.68*x)))
warning: passing floating-point values to sym is dangerous, see "help sym"
warning: called from
double_to_sym_heuristic at line 50 column 7
sym at line 379 column 13
mtimes at line 63 column 5
Incremental at line 3 column 4
warning: passing floating-point values to sym is dangerous, see "help sym"
warning: called from
double_to_sym_heuristic at line 50 column 7
sym at line 379 column 13
mtimes at line 63 column 5
Incremental at line 3 column 4
error: wrong type argument 'class'
error: str2func: FCN_NAME must be a string
error: called from
Incremental at line 4 column 2
Below is the flowchart of the incremental search method:
The problem happens in this line:
fct=input('enter your function in standard form: ');
Here input takes the user input and evaluates it. It tries to convert it into a number. In the next line,
f=str2func(fct)
you assume fct is a string.
To fix the problems, tell input to just return the user's input unchanged as a string (see the docs):
fct=input('enter your function in standard form: ', 's');
I am trying to apply the code found on this page, in particular part 'Copy Data from String Iterator' of the Table of Contents, but run into an issue with my code.
Since not all lines coming from the generator (here log_lines) can be imported into the PostgreSQL database, I try to filter the correct lines (here row) using itertools.filterfalse like in the codeblock below:
def copy_string_iterator(connection, log_lines) -> None:
with connection.cursor() as cursor:
create_staging_table(cursor)
log_string_iterator = StringIteratorIO((
'|'.join(map(clean_csv_value, (
row['date'],
row['time'],
row['cs_uri_query'],
row['s_contentpath'],
row['sc_status'],
row['s_computername'],
...
row['sc_substates'],
row['s_port'],
row['cs_version'],
row['c_protocol'],
row.update({'cs_cookie':'x'}),
row['timetakenms'],
row['cs_uri_stem'],
))) + '\n')
for row in filterfalse(lambda line: "#" in line.get('date'), log_lines)
)
cursor.copy_from(log_string_iterator, 'log_table', sep = '|')
When I run this, cursor.copy_from() gives me the following error:
QueryCanceled: COPY from stdin failed: error in .read() call
CONTEXT: COPY log_table, line 112910
I understand why this error happens, it is because in the test file I use there are only 112909 lines that meet the filterfalse condition. But why does it try to copy line 112910 and throw the error and not just stop?
Since Python doesn't have a coalescing operator, add something like:
(map(clean_csv_value, (
row['date'] if 'date' in row else None,
:
row['cs_uri_stem'] if 'cs_uri_stem' in row else None,
))) + '\n')
for each of your fields so you can handle any missing fields in the JSON file. Of course the fields should be nullable in the db if you use None otherwise replace with None with some default value for that field.
I want to run a MATLAB script M-file to reconstruct a point cloud in Octave. Therefore I had to rewrite some parts of the code to make it compatible with Octave. Actually the M-file works fine in Octave (I don't get any errors) and also the plotted point cloud looks good at first glance, but it seems that the variables are only half the size of the original MATLAB variables. In the attached screenshots you can see what I mean.
Octave:
MATLAB:
You can see that the dimension of e.g. M in Octave is 1311114x3 but in MATLAB it is 2622227x3. The actual number of rows in my raw file is 2622227 as well.
Here you can see an extract of the raw file (original data) that I use.
Rotation angle Measured distance
-0,090 26,295
-0,342 26,294
-0,594 26,294
-0,846 26,295
-1,098 26,294
-1,368 26,296
-1,620 26,296
-1,872 26,296
In MATLAB I created my output variable as follows.
data = table;
data.Rotationangle = cell2mat(raw(:, 1));
data.Measureddistance = cell2mat(raw(:, 2));
As there is no table function in Octave I wrote
data = cellfun(#(x)str2num(x), strrep(raw, ',', '.'))
instead.
Octave also has no struct2array function, so I had to replace it as well.
In MATLAB I wrote.
data = table2array(data);
In Octave this was a bit more difficult to do. I had to create a struct2array function, which I did by means of this bug report.
%% Create a struct2array function
function retval = struct2array (input_struct)
%input check
if (~isstruct (input_struct) || (nargin ~= 1))
print_usage;
endif
%convert to cell array and flatten/concatenate output.
retval = [ (struct2cell (input_struct)){:}];
endfunction
clear b;
b.a = data;
data = struct2array(b);
Did I make a mistake somewhere and could someone help me to solve this problem?
edit:
Here's the part of my script where I'm using raw.
delimiter = '\t';
startRow = 5;
formatSpec = '%s%s%[^\n\r]';
fileID = fopen(filename,'r');
dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'HeaderLines' ,startRow-1, 'ReturnOnError', false, 'EndOfLine', '\r\n');
fclose(fileID);
%% Convert the contents of columns containing numeric text to numbers.
% Replace non-numeric text with NaN.
raw = repmat({''},length(dataArray{1}),length(dataArray)-1);
for col=1:length(dataArray)-1
raw(1:length(dataArray{col}),col) = mat2cell(dataArray{col}, ones(length(dataArray{col}), 1));
end
numericData = NaN(size(dataArray{1},1),size(dataArray,2));
for col=[1,2]
% Converts text in the input cell array to numbers. Replaced non-numeric
% text with NaN.
rawData = dataArray{col};
for row=1:size(rawData, 1)
% Create a regular expression to detect and remove non-numeric prefixes and
% suffixes.
regexstr = '(?<prefix>.*?)(?<numbers>([-]*(\d+[\.]*)+[\,]{0,1}\d*[eEdD]{0,1}[-+]*\d*[i]{0,1})|([-]*(\d+[\.]*)*[\,]{1,1}\d+[eEdD]{0,1}[-+]*\d*[i]{0,1}))(?<suffix>.*)';
try
result = regexp(rawData(row), regexstr, 'names');
numbers = result.numbers;
% Detected commas in non-thousand locations.
invalidThousandsSeparator = false;
if numbers.contains('.')
thousandsRegExp = '^\d+?(\.\d{3})*\,{0,1}\d*$';
if isempty(regexp(numbers, thousandsRegExp, 'once'))
numbers = NaN;
invalidThousandsSeparator = true;
end
end
% Convert numeric text to numbers.
if ~invalidThousandsSeparator
numbers = strrep(numbers, '.', '');
numbers = strrep(numbers, ',', '.');
numbers = textscan(char(numbers), '%f');
numericData(row, col) = numbers{1};
raw{row, col} = numbers{1};
end
catch
raw{row, col} = rawData{row};
end
end
end
You don't see any raw in my workspaces because I clear all temporary variables before I reconstruct my point cloud.
Also my original data in row 1311114 and 1311115 look normal.
edit 2:
As suggested here is a small example table to clarify what I want and what MATLAB does with the table2array function in my case.
data =
-0.0900 26.2950
-0.3420 26.2940
-0.5940 26.2940
-0.8460 26.2950
-1.0980 26.2940
-1.3680 26.2960
-1.6200 26.2960
-1.8720 26.2960
With the struct2array function I used in Octave I get the following array.
data =
-0.090000 26.295000
-0.594000 26.294000
-1.098000 26.294000
-1.620000 26.296000
-2.124000 26.295000
-2.646000 26.293000
-3.150000 26.294000
-3.654000 26.294000
If you compare the Octave array with my original data, you can see that every second row is skipped. This seems to be the reason for 1311114 instead of 2622227 rows.
edit 3:
I tried to solve my problem with the suggestions of #Tasos Papastylianou, which unfortunately was not successful.
First I did the variant with a struct.
data = struct();
data.Rotationangle = [raw(:,1)];
data.Measureddistance = [raw(:,2)];
data = cell2mat( struct2cell (data ).' )
But this leads to the following structure in my script. (Unfortunately the result is not what I would like to have as shown in edit 2. Don't be surprised, I only used a small part of my raw file to accelerate the run of my script, so here are only 769 lines.)
[766,1] = -357,966
[767,1] = -358,506
[768,1] = -359,010
[769,1] = -359,514
[1,2] = 26,295
[2,2] = 26,294
[3,2] = 26,294
[4,2] = 26,296
Furthermore I get the following error.
error: unary operator '-' not implemented for 'cell' operands
error: called from
Cloud_reconstruction at line 137 column 11
Also the approach with the dataframe octave package didn't work. When I run the following code it leads to the error you can see below.
dataframe2array = #(df) cell2mat( struct(df).x_data );
pkg load dataframe;
data = dataframe();
data.Rotationangle = [raw(:, 1)];
data.Measureddistance = [raw(:, 2)];
dataframe2array(data)
error:
warning: Trying to overwrite colum names
warning: called from
df_matassign at line 147 column 13
subsasgn at line 172 column 14
Cloud_reconstruction at line 106 column 20
warning: Trying to overwrite colum names
warning: called from
df_matassign at line 176 column 13
subsasgn at line 172 column 14
Cloud_reconstruction at line 106 column 20
warning: Trying to overwrite colum names
warning: called from
df_matassign at line 147 column 13
subsasgn at line 172 column 14
Cloud_reconstruction at line 107 column 23
warning: Trying to overwrite colum names
warning: called from
df_matassign at line 176 column 13
subsasgn at line 172 column 14
Cloud_reconstruction at line 107 column 23
error: RHS(_,2): but RHS has size 768x1
error: called from
df_matassign at line 179 column 11
subsasgn at line 172 column 14
Cloud_reconstruction at line 107 column 23
Both error messages refer to the following part of my script where I'm doing the reconstruction of the point cloud in cylindrical coordinates.
distLaserCenter = 47; % Distance between the pipe centerline and the blind zone in mm
m = size(data,1); % Find the length of the first dimension of data
zincr = 0.4/360; % z increment in mm per deg
data(:,1) = -data(:,1);
for i = 1:m
data(i,2) = data(i,2) + distLaserCenter;
if i == 1
data(i,3) = 0;
elseif abs(data(i,1)-data(i-1)) < 100
data(i,3) = data(i-1,3) + zincr*(data(i,1)-data(i-1));
else abs(data(i,1)-data(i-1)) > 100;
data(i,3) = data(i-1,3) + zincr*(data(i,1)-(data(i-1)-360));
end
end
To give some background information for a better understanding. The script is used to reconstruct a pipe as a point cloud. The surface of the pipe was scanned from inside with a laser and the laser measured several points (distance from laser to the inner wall of the pipe) at each deg of rotation. I hope this helps to understand what I want to do with my script.
Not sure exactly what you're trying to do, but here's a toy example of how a struct could be used in an equivalent manner to a table:
matlab:
data = table;
data.A = [1;2;3;4;5];
data.B = [10;20;30;40;50];
table2array(data)
octave:
data = struct();
data.A = [1;2;3;4;5];
data.B = [10;20;30;40;50];
cell2mat( struct2cell (data ).' )
Note the transposition operation (.') before passing the result to cell2mat, since in a table, the 'fieldnames' are arranged horizontally in columns, whereas the struct2cell ends up arranging what used to be the 'fieldnames' as rows.
You might also be interested in the dataframe octave package, which performs similar functions to matlab's table (or in fact, R's dataframe object): https://octave.sourceforge.io/dataframe/ (you can install this by typing pkg install -forge dataframe in your console)
Unfortunately, the way to display the data as an array is still not ideal (see: https://stackoverflow.com/a/55417141/4183191), but you can easily convert that into a tiny function, e.g.
dataframe2array = #(df) cell2mat( struct(df).x_data );
Your code can then become:
pkg load dataframe;
data = dataframe();
data.A = [1;2;3;4;5];
data.B = [10;20;30;40;50];
dataframe2array(data)
I'm using Latex since years but I'm new to embedded luacode (with Lualatex). Below you can see a simplified example:
\begin{filecontents*}{data.json}
[
{"firstName":"Max", "lastName":"Möller"},
{"firstName":"Anna", "lastName":"Smith"}
];
\end{filecontents*}
\documentclass[11pt]{article}
\usepackage{fontspec}
%\setmainfont{Carlito}
\usepackage{tikz}
\usepackage{luacode}
\begin{document}
\begin{luacode}
require("lualibs.lua")
local file = io.open('data.json','rb')
local jsonstring = file:read('*a')
file.close()
local jsondata = utilities.json.tolua(jsonstring)
tex.print('\\begin{tabular}{cc}')
for key, value in pairs(jsondata) do
tex.print(value["firstName"] .. ' & ' .. value["lastName"] .. '\\\\')
end
tex.print('\\hline\\end{tabular}')
\end{luacode}
\end{document}
When executing Lualatex following error occurs:
LuaTeX error [\directlua]:6: attempt to index field 'json' (a nil value) [\directlua]:6: in main chunk. \end{luacode}
When commenting the line \usepackage{fontspec} the output will be produced. Alternatively, the error can be avoided by commenting utilities.json.tolua(jsonstring) and all following lua-code lines.
So the question is: How can I use both "fontspec" package and json-data without generating an error message? Apart from this I have another question: How to enable german umlauts in output of luacode (see first "lastName" in example: Möller)?
Ah, I'm using TeX Live 2015/Debian on Ubuntu 16.04.
Thank you,
Jerome
Complete Julia newbie here.
I'd like to do some processing on a CSV. Something along the lines of:
using CSV
in_file = CSV.Source('/dir/in.csv')
out_file = CSV.Sink('/dir/out.csv')
for line in CSV.eachline(in_file)
replace!(line, "None", "")
CSV.writeline(out_file, line)
end
This is in pseudocode, those aren't existing functions.
Idiomatically, should I iterate on 1:CSV.countlines(in_file)? Do a while and check something?
If all you want to do is replace a string in the line, you do not need any CSV parsing utilities. All you do is read the file line by line, replace, and write. So:
infile = "/path/to/input.csv"
outfile = "/path/to/output.csv"
out = open(outfile, "w+")
for line in readlines(infile)
newline = replace(line, "a", "b")
write(out, newline)
end
close(out)
This will replicate the pseudocode you have in your question.
If you need to parse and read the csv field by field, use the readcsv function in base.
data=readcsv(infile)
typeof(data) #Array{Any,2}
This will return the data in the file as a 2 dimensional array. You can process this data any way you want, and write it back using the writecsv function.
for i in 1:size(data,1) #iterate by rows
data[i, 1] = "This is " * data[i, 1] # Add text to first column
end
writecsv(outfile, data)
Documentation for these functions:
http://docs.julialang.org/en/release-0.5/stdlib/io-network/?highlight=readcsv#Base.readcsv
http://docs.julialang.org/en/release-0.5/stdlib/io-network/?highlight=readcsv#Base.writecsv