memset cuArray for surface memory - cuda

Say you have a cuArray for binding a surface object.
Something of the form:
// These are inputs to a function really.
cudaArray* d_cuArrSurf
cudaSurfaceObject_t * surfImage;
const cudaExtent extent = make_cudaExtent(width, height, depth);
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>();
cudaMalloc3DArray(&d_cuArrSurf, &channelDesc, extent);
// Bind to Surface
cudaResourceDesc surfRes;
memset(&surfRes, 0, sizeof(cudaResourceDesc));
surfRes.resType = cudaResourceTypeArray;
surfRes.res.array.array = d_cuArrSurf;
cudaCreateSurfaceObject(surfImage, &surfRes);
Now, I want to initialize this cuArray to zero. Apparently there is non memset for cuArray type of objects. What would be the best way to do this? Maybe multiple options are possible, and some may have better or worse features. Which are these options?
I can think of
allocate and zero host memory and copy it using cudaMemcpy3D().
create an initialization kernel and write it with surf3Dwrite()

Would it be possible for you to show an example of those lines?
Here is a rough example, roughly extending the previous rough example:
$ cat t1648.cu
// Includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
__device__ float my_common(float *d, int width, unsigned int x, unsigned int y){
// 200 lines of common code...
return d[y *width +x];
}
////////////////////////////////////////////////////////////////////////////////
// Kernels
////////////////////////////////////////////////////////////////////////////////
//! Write to a cuArray using surface writes
//! #param gIData input data in global memory
////////////////////////////////////////////////////////////////////////////////
__global__ void WriteKernel(float *gIData, int width, int height,
cudaSurfaceObject_t outputSurface)
{
// calculate surface coordinates
unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int z = blockIdx.z*blockDim.z + threadIdx.z;
// read from global memory and write to cuarray (via surface reference)
surf3Dwrite(my_common(gIData, width, x, y),
outputSurface, x*4, y, z, cudaBoundaryModeTrap);
}
__global__ void WriteKernel(float *gIData, int width, int height,
float *out)
{
// calculate coordinates
unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;
// read from global memory and write to global memory
out[y*width+x] = my_common(gIData, width, x, y);
}
__global__ void ReadKernel(float tval, cudaSurfaceObject_t outputSurface)
{
// calculate surface coordinates
unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int z = blockIdx.z*blockDim.z + threadIdx.z;;
// read from global memory and write to cuarray (via surface reference)
float val;
surf3Dread(&val,
outputSurface, x*4, y, z, cudaBoundaryModeTrap);
if (val != tval) printf("oops\n");
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv)
{
printf("starting...\n");
unsigned width = 256;
unsigned height = 256;
unsigned depth = 256;
unsigned int size = depth*width * height * sizeof(float);
// Allocate device memory for result
float *dData = NULL;
cudaMalloc((void **) &dData, size);
// Allocate array and copy image data
float *out, *h_out;
h_out = new float[height*width*depth];
float tval = 1.0f;
for (int i = 0; i < height*width*depth; i++) h_out[i] = tval;
cudaArray* d_cuArrSurf;
cudaSurfaceObject_t surfImage;
const cudaExtent extent = make_cudaExtent(width, height, depth);
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>();
cudaMalloc3DArray(&d_cuArrSurf, &channelDesc, extent);
// Bind to Surface
cudaResourceDesc surfRes;
memset(&surfRes, 0, sizeof(cudaResourceDesc));
surfRes.resType = cudaResourceTypeArray;
surfRes.res.array.array = d_cuArrSurf;
cudaCreateSurfaceObject(&surfImage, &surfRes);
cudaMalloc(&out, size);
cudaMemcpy(out, h_out, size, cudaMemcpyHostToDevice);
dim3 dimBlock(8, 8, 8);
dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);
// initialize array
cudaMemcpy3DParms p = {0};
p.srcPtr = make_cudaPitchedPtr(out, width*sizeof(out[0]), width, height);
p.srcPos = make_cudaPos(0,0,0);
p.dstArray = d_cuArrSurf;
p.dstPos = make_cudaPos(0,0,0);
p.extent = make_cudaExtent(width, height, 1);
p.kind = cudaMemcpyDefault;
for (int i = 0; i < depth; i++){
cudaMemcpy3D(&p);
p.dstPos = make_cudaPos(0,0, i+1);}
ReadKernel<<<dimGrid, dimBlock>>>(tval, surfImage);
WriteKernel<<<dimGrid, dimBlock>>>(dData, width, height, surfImage);
WriteKernel<<<dimGrid, dimBlock>>>(dData, width, height, out);
cudaDeviceSynchronize();
}
$ nvcc -o t1648 t1648.cu
$ cuda-memcheck ./t1648
========= CUDA-MEMCHECK
starting...
========= ERROR SUMMARY: 0 errors
$
The (total) extent above is 256x256x256. So I chose to do a 256x256 transfer (per-transfer extent) (basically each z-slice) over 256 iterations of cudaMemcpy3D. It seems to pass the sniff test.
I used 1 as my initializing value for device memory here "just because". If you wanted to make this faster and initialize to zero, skip the host->device copy and just use cudaMemset to initialize the linear memory (source for 3D transfer) to zero.

Related

cudaMallocManaged and cudaDeviceSynchronize()

I have the following two mostly identical example codes. code1.cu use cudaMalloc and cudaMemcpy to handling device/host variable value exchange.
The code2.cu use cudaMallocManaged and thus cudaMemcpy is not needed. When cudaMallocManaged is used, I have to include cudaDeviceSynchronize() to get the correct results, while for the one with cudaMalloc, this is not needed. I would appreciate some hint on why this is happening
code2.cu
#include <iostream>
#include <math.h>
#include <vector>
//
using namespace std;
// Kernel function to do nested loops
__global__
void add(int max_x, int max_y, float *tot, float *x, float *y)
{
int i = blockIdx.x*blockDim.x + threadIdx.x;
int j = blockIdx.y*blockDim.y + threadIdx.y;
if(i < max_x && j<max_y) {
atomicAdd(tot, x[i] + y[j]);
}
}
int main(void)
{
int Nx = 1<<15;
int Ny = 1<<15;
float *d_x = NULL, *d_y = NULL;
float *d_tot = NULL;
cudaMalloc((void **)&d_x, sizeof(float)*Nx);
cudaMalloc((void **)&d_y, sizeof(float)*Ny);
cudaMallocManaged((void **)&d_tot, sizeof(float));
// Allocate Unified Memory – accessible from CPU or GPU
vector<float> vx;
vector<float> vy;
// initialize x and y arrays on the host
for (int i = 0; i < Nx; i++)
vx.push_back(i);
for (int i = 0; i < Ny; i++)
vy.push_back(i*10);
//
float tot = 0;
for(int i = 0; i<vx.size(); i++)
for(int j = 0; j<vy.size(); j++)
tot += vx[i] + vy[j];
cout<<"CPU: tot: "<<tot<<endl;
//
cudaMemcpy(d_x, vx.data(), vx.size()*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_y, vy.data(), vy.size()*sizeof(float), cudaMemcpyHostToDevice);
//
int blockSize; // The launch configurator returned block size
int minGridSize; // The minimum grid size needed to achieve the
cudaOccupancyMaxPotentialBlockSize( &minGridSize, &blockSize, add, 0, Nx+Ny);
//.. bx*by can not go beyond the blockSize, or hardware limit, which is 1024;
//.. bx*bx = blockSize && bx/by=Nx/Ny, solve the equation
int bx = sqrt(blockSize*Nx/(float)Ny);
int by = bx*Ny/(float)Nx;
dim3 blockSize_3D(bx, by);
dim3 gridSize_3D((Nx+bx-1)/bx, (Ny+by+1)/by);
cout<<"blockSize: "<<blockSize<<endl;
cout<<"bx: "<<bx<<" by: "<<by<<" gx: "<<gridSize_3D.x<<" gy: "<<gridSize_3D.y<<endl;
// calculate theoretical occupancy
int maxActiveBlocks;
cudaOccupancyMaxActiveBlocksPerMultiprocessor( &maxActiveBlocks, add, blockSize, 0);
int device;
cudaDeviceProp props;
cudaGetDevice(&device);
cudaGetDeviceProperties(&props, device);
float occupancy = (maxActiveBlocks * blockSize / props.warpSize) /
(float)(props.maxThreadsPerMultiProcessor /
props.warpSize);
printf("Launched blocks of size %d. Theoretical occupancy: %f\n",
blockSize, occupancy);
// Run kernel on 1M elements on the GPU
tot = 0;
add<<<gridSize_3D, blockSize_3D>>>(Nx, Ny, d_tot, d_x, d_y);
// Wait for GPU to finish before accessing on host
//cudaDeviceSynchronize();
tot =*d_tot;
//
//
cout<<" GPU: tot: "<<tot<<endl;
// Free memory
cudaFree(d_x);
cudaFree(d_y);
cudaFree(d_tot);
return 0;
}
code1.cu
#include <iostream>
#include <math.h>
#include <vector>
//
using namespace std;
// Kernel function to do nested loops
__global__
void add(int max_x, int max_y, float *tot, float *x, float *y)
{
int i = blockIdx.x*blockDim.x + threadIdx.x;
int j = blockIdx.y*blockDim.y + threadIdx.y;
if(i < max_x && j<max_y) {
atomicAdd(tot, x[i] + y[j]);
}
}
int main(void)
{
int Nx = 1<<15;
int Ny = 1<<15;
float *d_x = NULL, *d_y = NULL;
float *d_tot = NULL;
cudaMalloc((void **)&d_x, sizeof(float)*Nx);
cudaMalloc((void **)&d_y, sizeof(float)*Ny);
cudaMalloc((void **)&d_tot, sizeof(float));
// Allocate Unified Memory – accessible from CPU or GPU
vector<float> vx;
vector<float> vy;
// initialize x and y arrays on the host
for (int i = 0; i < Nx; i++)
vx.push_back(i);
for (int i = 0; i < Ny; i++)
vy.push_back(i*10);
//
float tot = 0;
for(int i = 0; i<vx.size(); i++)
for(int j = 0; j<vy.size(); j++)
tot += vx[i] + vy[j];
cout<<"CPU: tot: "<<tot<<endl;
//
cudaMemcpy(d_x, vx.data(), vx.size()*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_y, vy.data(), vy.size()*sizeof(float), cudaMemcpyHostToDevice);
//
int blockSize; // The launch configurator returned block size
int minGridSize; // The minimum grid size needed to achieve the
cudaOccupancyMaxPotentialBlockSize( &minGridSize, &blockSize, add, 0, Nx+Ny);
//.. bx*by can not go beyond the blockSize, or hardware limit, which is 1024;
//.. bx*bx = blockSize && bx/by=Nx/Ny, solve the equation
int bx = sqrt(blockSize*Nx/(float)Ny);
int by = bx*Ny/(float)Nx;
dim3 blockSize_3D(bx, by);
dim3 gridSize_3D((Nx+bx-1)/bx, (Ny+by+1)/by);
cout<<"blockSize: "<<blockSize<<endl;
cout<<"bx: "<<bx<<" by: "<<by<<" gx: "<<gridSize_3D.x<<" gy: "<<gridSize_3D.y<<endl;
// calculate theoretical occupancy
int maxActiveBlocks;
cudaOccupancyMaxActiveBlocksPerMultiprocessor( &maxActiveBlocks, add, blockSize, 0);
int device;
cudaDeviceProp props;
cudaGetDevice(&device);
cudaGetDeviceProperties(&props, device);
float occupancy = (maxActiveBlocks * blockSize / props.warpSize) /
(float)(props.maxThreadsPerMultiProcessor /
props.warpSize);
printf("Launched blocks of size %d. Theoretical occupancy: %f\n",
blockSize, occupancy);
// Run kernel on 1M elements on the GPU
tot = 0;
add<<<gridSize_3D, blockSize_3D>>>(Nx, Ny, d_tot, d_x, d_y);
// Wait for GPU to finish before accessing on host
//cudaDeviceSynchronize();
//
cudaMemcpy(&tot, d_tot, sizeof(float), cudaMemcpyDeviceToHost);
//
cout<<" GPU: tot: "<<tot<<endl;
// Free memory
cudaFree(d_x);
cudaFree(d_y);
cudaFree(d_tot);
return 0;
}
//Code2.cu has the following output:
//
//CPU: tot: 8.79609e+12
//blockSize: 1024
//bx: 32 by: 32 gx: 1024 gy: 1025
//Launched blocks of size 1024. Theoretical occupancy: 1.000000
//GPU: tot: 0
After remove the comment on cudaDeviceSynchronize(),
GPU: tot: 8.79609e+12
CUDA kernel launches are asynchronous. That means that they execute independently of the CPU thread that launched them.
Because of this asynchronous launch, the CUDA kernel is not guaranteed to be finished (or even started) by the time your CPU thread code begins testing the result.
Therefore it is necessary to wait until the GPU kernel is complete, and cudaDeviceSynchronize() does exactly that. cudaMemcpy also has a synchronizing effect, so when you remove the cudaMemcpy operations, you lose that synchronization, but cudaDeviceSynchronize() restores it.

Cuda program not working

i'm a beginner in cuda programming. I'm trying an own easy code but it's not working and I don't know what else to do.
My code:
#include <mpi.h>
#include <cuda.h>
#include <stdio.h>
#include <sys/wait.h>
// Prototypes
__global__ void helloWorld(char*);
__device__ int getGlobalIdx_2D_2D();
// Host function
int main(int argc, char** argv)
{
unsigned int i, N, gridX, gridY, blockX, blockY;
N = 4096000;
char *str = (char *) malloc(N*sizeof(char));
for(i=0; i < N; i++) str[i]='c';
MPI_Init (&argc, &argv);
char *d_str;
size_t size = (size_t) N*sizeof(char);
cudaMalloc((void**)&d_str, size);
cudaMemcpy(d_str, str, size, cudaMemcpyHostToDevice);
gridX = 100;
gridY = 10;
blockX = blockY = 64;
dim3 dimGrid(gridX, gridY); // 4096 chars per block
dim3 dimBlock(blockX, blockY); // one thread per character, 2D
printf("dimGrid(%d, %d)\t", gridX, gridY);
printf("dimBlock(%d, %d)\t", blockX, blockY);
helloWorld<<< dimGrid, dimBlock >>>(d_str);
cudaMemcpy(str, d_str, size, cudaMemcpyDeviceToHost);
cudaThreadSynchronize();
MPI_Barrier (MPI_COMM_WORLD);
cudaFree(d_str);
printf("\nRes:\n");
for(i = 0; i < N; i++) printf("\t[%u] %c\n", i, str[i]);
MPI_Finalize ();
free(str);
return 0.0;
}
// Device kernel
__global__ void helloWorld(char* str)
{
// determine where in the thread grid we are
int pos = getGlobalIdx_2D_2D();
if (pos % 2 == 0) str[pos] -= 2;
else str[pos] += 8;
}
__device__ int getGlobalIdx_2D_2D()
{
int blockId = blockIdx.x + blockIdx.y * gridDim.x;
int threadId = blockId * (blockDim.x * blockDim.y) +
(threadIdx.y * blockDim.x) + threadIdx.x;
return threadId;
}
My desired output is: jajajajajajaja... x4096000
I've read that '%' operation is not efficient, but I don't think is the problem there.
Thanks!
You are performing absolutely no CUDA error checking, it is really beneficial to do so. Once you enable it you can find that block dimensions 64 x 64 are invalid as it results into 4096 threads within one block, which is not a valid configuration.

loop unrolling with dynamic parallelism decrease the time performance

I have a simple program to calculate square root, loop unrolling was done as
loop unrolling
#include <stdio.h>
#include <cuda.h>
__global__ void square(float *a, int N,int idx);
// Kernel that executes on the CUDA device
__global__ void first(float *arr, int N)
{
int idx = 2*(blockIdx.x * blockDim.x + threadIdx.x);
int n=N;
//printf("%d\n",n);
for(int q=0;q<2;q++)
{
if(N<2000)
{
arr[idx+q] = arr[idx+q] * arr[idx+q];
}
}
}
// main routine that executes on the host
int main(void)
{
clock_t start = clock(),diff;
float *a_h, *a_d; // Pointer to host & device arrays
const int N = 1000; // Number of elements in arrays
size_t size = N * sizeof(float);
a_h = (float *)malloc(size); // Allocate array on host
cudaMalloc((void **) &a_d, size); // Allocate array on device
// Initialize host array and copy it to CUDA device
for (int i=0; i<N; i++) a_h[i] = (float)i;
cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
// Do calculation on device:
int block_size = 4;
//int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
first <<< 4, 128 >>> (a_d, N);
//cudaThreadSynchronize();
// Retrieve result from device and store it in host array
cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
// Print results
for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
// Cleanup
free(a_h); cudaFree(a_d);
diff = clock() - start;
int msec = diff * 1000 / CLOCKS_PER_SEC;
printf("Time taken %d seconds %d milliseconds\n", msec/1000, msec%1000);
}
then realizing that the loop calculation can be minimized with dynamic parallelism .
unrolling with dynamic parallelism was implemented as
unrolling with dynamic parallelism
#include <stdio.h>
#include <cuda.h>
__global__ void square(float *a, int N,int idx);
// Kernel that executes on the CUDA device
__global__ void first(float *arr, int N)
{
int idx = 2*(blockIdx.x * blockDim.x + threadIdx.x);
int n=N;
square <<< 1,2 >>> (arr, n,idx);
}
__global__ void square(float *a, int N,int idx)
{
int tdx = blockIdx.x * blockDim.x + threadIdx.x;
printf("%d\n",N);
if(N<2000)
{
a[tdx+idx] = a[tdx+idx] * a[tdx+idx];
}
}
// main routine that executes on the host
int main(void)
{
clock_t start = clock(),diff;
float *a_h, *a_d; // Pointer to host & device arrays
const int N = 1000; // Number of elements in arrays
size_t size = N * sizeof(float);
a_h = (float *)malloc(size); // Allocate array on host
cudaMalloc((void **) &a_d, size); // Allocate array on device
// Initialize host array and copy it to CUDA device
for (int i=0; i<N; i++) a_h[i] = (float)i;
cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
// Do calculation on device:
int block_size = 4;
//int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
first <<< 4, 128 >>> (a_d, N);
//cudaThreadSynchronize();
// Retrieve result from device and store it in host array
cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
// Print results
for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
// Cleanup
free(a_h); cudaFree(a_d);
diff = clock() - start;
int msec = diff * 1000 / CLOCKS_PER_SEC;
printf("Time taken %d seconds %d milliseconds\n", msec/1000, msec%1000);
}
the implementation of dynamic parallelism with unrolling takes more time for executio than only unrolling. Aren,t we suppose to improve execution time with dynamic parallelism in such case?
Dynamic parallelism is mainly useful in cases where you have parallelism that is dynamic. That is: cases where you don't know how much parallelism you're going to need until you've done some calculation. Rather than transfer data back to the host which is then instantly fed into parameterising another launch, you launch from within the kernel. In this pattern, with memcpys between kernel launches avoided, you'll see speedup.
In your example above this is not the case. You could have just launched twice as many threads from the host. There's nothing dynamic required as there's no parallelism available there that you didn't know about at the time of the first kernel launch.
Furthermore, performance requirements for kernels launched using dynamic parallelism are similar to that of those launched from the host. You have to launch a reasonable amount of work or the launch latency will dominate your computation time.

What is difference between float and double types in cuda programming?

I am new in cuda programming. In my program (Matrix multiplication using shared memory) I defined block_size=20 and when matrices are 1200*1200 the program works with double elements but it does not work with float elements (when elements are float it works with 840*840 matrices). My question is that why it happens , although we know float type is smaller than double?
// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
#include <stdio.h>
#define BLOCK_SIZE 20
typedef struct {
int width;
int height;
int stride;
float* elements;
} Matrix;
// Get a matrix element
__device__ float GetElement(const Matrix A, int row, int col)
{
return A.elements[row * A.stride + col];
}
// Set a matrix element
__device__ void SetElement(Matrix A, int row, int col,
float value)
{
A.elements[row * A.stride + col] = value;
}
// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is
// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
__device__ Matrix GetSubMatrix(Matrix A, int row, int col)
{
Matrix Asub;
Asub.width = BLOCK_SIZE;
Asub.height = BLOCK_SIZE;
Asub.stride = A.stride;
Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row+ BLOCK_SIZE * col];
return Asub;
}
// Thread block size
// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);
// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
// Load A and B to device memory
Matrix d_A;
d_A.width = d_A.stride = A.width; d_A.height = A.height;
siz e_t size = A.width * A.height * sizeof(float);
cudaMalloc((void **)&d_A.elements, size);
cudaMemcpy(d_A.elements, A.elements, size,
cudaMemcpyHostToDevice);
Matrix d_B;
d_B.width = d_B.stride = B.width; d_B.height = B.height;
size = B.width * B.height * sizeof(float);
cudaMalloc((void **)&d_B.elements, size);
cudaMemcpy(d_B.elements, B.elements, size,
cudaMemcpyHostToDevice);
// Allocate C in device memory
Matrix d_C;
d_C.width = d_C.stride = C.width; d_C.height = C.height;
size = C.width * C.height * sizeof(float);
cudaMalloc((void **)&d_C.elements, size);
// Invoke kernel
dim3 dimBlock(BLOCK_SIZE,BLOCK_SIZE);
//dim3 dimBlock(C.height, C.width);
//dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
dim3 dimGrid((B.width+dimBlock.x-1) / dimBlock.x, (A.height+dimBlock.y-1) /dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
// Read C from device memory
cudaMemcpy(C.elements, d_C.elements, size,
cudaMemcpyDeviceToHost);
// Free device memory
cudaFree(d_A.elements);
cudaFree(d_B.elements);
cudaFree(d_C.elements);
}
// Matrix multiplication kernel called by MatMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{
// Block row and column
int blockRow = blockIdx.y;
int blockCol = blockIdx.x;
// Each thread block computes one sub-matrix Csub of C
Matrix Csub = GetSubMatrix(C, blockRow, blockCol);
// Each thread computes one element of Csub
// by accumulating results into Cvalue
float Cvalue = 0;
// Thread row and column within Csub
int row = threadIdx.y;
int col = threadIdx.x;
// Loop over all the sub-matrices of A and B that are
// required to compute Csub
// Multiply each pair of sub-matrices together
// and accumulate the results
for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {
// Get sub-matrix Asub of A
Matrix Asub = GetSubMatrix(A, blockRow, m);
// Get sub-matrix Bsub of B
Matrix Bsub = GetSubMatrix(B, m, blockCol);
// Shared memory used to store Asub and Bsub respectively
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
// Load Asub and Bsub from device memory to shared memory
// Each thread loads one element of each sub-matrix
As[row][col] = GetElement(Asub, row, col);
Bs[row][col] = GetElement(Bsub, row, col);
// Synchronize to make sure the sub-matrices are loaded
// before starting the computation
__syncthreads();
// Multiply Asub and Bsub together
for (int e = 0; e < BLOCK_SIZE; ++e)
Cvalue += As[row][e] * Bs[e][col];
// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();
}
// Write Csub to device memory
// Each thread writes one element
SetElement(Csub, row, col, Cvalue);
}
//////////////////////////////////////////////////////////
/// print_matrix function ///////////////////////////
////////////////////////////////////////////////////////
void print_matrix(float *c,int row,int col){
for (int i = 0; i < row; ++i){
for (int j = 0; j < col; ++j)
printf("%f ",c[col*i +j]);
printf("\n\n");
}
}
//////////////////////////////////////////////////////////
/// random_init function ///////////////////////////
////////////////////////////////////////////////////////
void random_init(float *a,int size){
for(int i=0;i<size;i++)
a[i]=rand()%10;
}
////////////////////////////////////////////////////////
int main(void){
//////////////////////////////////////////////////////\|/
cudaEvent_t start,stop;
///////////////////////////////////////////////////////|\
Matrix A,B,C;
A.width=1200;
A.height=1200;/////
B.width=1200;/////
B.height=1200;
C.width=B.width;
C.height=A.height;
size_t size = A.width * A.height * sizeof(float);
A.elements = (float *)malloc(size);
//random_init(A.elements,A.width * A.height );
size = B.width * B.height * sizeof(float);
B.elements= (float *)malloc(size);
//random_init(B.elements,B.width * B.height);
size = C.width * C.height * sizeof(float);
C.elements= (float *)malloc(size);
for(int i=0;i<A.width*A.height;i++)
A.elements[i]=1;
for(int i=0;i<B.width*B.height;i++)
B.elements[i]=1;
printf("matrix A(%d,%d) & matrix B(%d,%d) & matrix C(%d,%d)\n",A.width,A.height,B.width,
B.height,C.width,C.height);
//////////////////////////////////////////////////////\|/
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start,0);
///////////////////////////////////////////////////////|\
MatMul(A,B,C);
//////////////////////////////////////////////////////\|/
cudaEventRecord(stop,0);
cudaEventSynchronize(stop);
float elapsedTime;
cudaEventElapsedTime(&elapsedTime,start,stop);
printf("Time to genreat : %3.5f ms\n",elapsedTime);
///////////////////////////////////////////////////////|\
printf("\nC\n");
//print_matrix(C.elements,C.height,C.width);
printf("C[%d]=%f\n",0,C.elements[0]);
printf("C[%d]=%f\n",C.width -1,C.elements[C.width-1]);
printf("C[%d]=%f\n",(C.width * C.height)-1,C.elements[(C.width * C.height)-1]);
getchar();
return(0);
}
The following message:
"“display driver stopped responding and has recovered”"
is an indication that you have run into a windows TDR event.
Under windows, kernels that take too long to execute will cause the windows display watchdog timer to reset the display device, which will cause CUDA code execution to be terminated. Kernels that require more than about 2 seconds to execute may run into this.
If you search on "windows TDR" you will find other descriptions and possible methods to work around this. You might also investigate why your code is taking longer to execute after you make the changes.

Bind CUDA Texture to a float Image

I have a 1 channel, float image in C side like the following:
int width, height;
float* img;
I want to pass this image to a CUDA texture. I'm reading the NVIDIA CUDA C Programming Guide (page 42-43) and using the tutorial, wrote a code like the following:
main.cpp:
int main()
{
int width, height;
float* h_Input;
ReadImage(&h_Input, &width, &height); // My function which reads the image.
WriteImage(h_Input, width, height); // works perfectly...
float* h_Output = (float*) malloc(sizeof(float) * width * height);
CalculateWithCuda(h_Input, h_Output, width,height);
WriteImage(h_Output, width, height); // writes an empty-gray colored image.... *WHY???*
}
kernel.cu:
texture<float, cudaTextureType2D, cudaReadModeElementType> texRef; // 2D float texture
__global__ void Kernel(float* output, int width, int height)
{
int i = blockIdx.y * blockDim.y + threadIdx.y; // row number
int j = blockIdx.x * blockDim.x + threadIdx.x; // col number
if(i < height && j < width)
{
float temp = tex2D(texRef, i + 0.5f, j + 0.5f);
output[i * width + j] = temp ;
}
}
void CalculateWithCuda(const float* h_input, float* h_output, int width, int height)
{
float* d_output;
// Allocate CUDA array in device memory
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0,cudaChannelFormatKindFloat);
cudaArray* cuArray;
cudaMallocArray(&cuArray, &channelDesc, width, height);
// Copy to device memory some data located at address h_data in host memory
cudaMemcpyToArray(cuArray, 0, 0, h_input, width * height * sizeof(float) , cudaMemcpyHostToDevice);
// Set texture parameters
texRef.addressMode[0] = cudaAddressModeWrap;
texRef.addressMode[1] = cudaAddressModeWrap;
texRef.filterMode = cudaFilterModeLinear;
texRef.normalized = true;
// Bind the array to the texture reference
cudaBindTextureToArray(texRef, cuArray, channelDesc);
// Allocate GPU buffers for the output image ..
cudaMalloc(&d_output, sizeof(float) * width * height);
dim3 threadsPerBlock(16,16);
dim3 numBlocks((width/threadsPerBlock.x) + 1, (height/threadsPerBlock.y) + 1);
Kernel<<<numBlocks, threadsPerBlock>>>(d_output, width,height);
cudaDeviceSynchronize();
// Copy output vector from GPU buffer to host memory.
cudaMemcpy(h_output, d_output, sizeof(float) * width * height, cudaMemcpyDeviceToHost);
// Free GPU memory ...
}
As I said in the code; this Kernel has to read from the texture and give me the same image as output. However, I'm taking an empty (grays colored) image for the output. I just implemented the same way in the tutorial, why does not this texture work?
I will be appreciated if somebody show me a way to fix this issue ...
PS: Sure, it's not the all of the code. I just copied the necessary parts. If you need other details, I will support as well.
Thanks in advance.
When you use the normalized coordinates the texture is accessed via the coordinates from 0 to 1 (exclusive). You forgot translate your integer threadIdx-based coordinates into normalized.
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
float u = x / (float)width;
float v = y / (float)height;