How do I sum an array on GPU with CUDA? - cuda

I am trying to use GPU to sum an array with such code:
__global__ void sum_array(int* a, uint n) {
uint idx = threadIdx.x + blockIdx.x * blockDim.x;
for (int s = 1; s < n; s *= 2) {
uint i1 = s * 2 * idx;
uint i2 = s * (2 * idx + 1);
if (i2 < n) {
a[i1] += a[i2];
}
__syncthreads();
}
}
For the test I generated my array as [0, 1, 2 ... 99], so the result should be 4950. When I set block as [1024, 1, 1] and grid as [1, 1] everything works fine: the value of a[0] contains the correct result after the calculation. But if I set block=[4, 1, 1] and grid=[25, 1], I get the result 4754 that is wrong (but from time to time, the function provides the correct result). It looks like all the threads are not synced properly in different blocks. How can I fix my code to make it work correctly with multiple blocks? I am going to sum long arrays that are longer than the number of threads I can use, so I need a solution for many blocks (blockDim.x > 1).

I found this solution:
__global__ void sum_array(int* a, uint n) {
uint tid = threadIdx.x;
uint offset = 2 * blockIdx.x * blockDim.x;
for (uint s = 1; s <= blockDim.x; s *= 2) {
if (tid % s == 0) {
uint idx = 2 * tid + offset;
if (idx + s < n) {
atomicAdd(a + idx, a[idx + s]);
}
}
__syncthreads();
}
if ((offset != 0) && (tid == 0)) {
atomicAdd(a, a[offset]);
}
}
In short, I applied similar algorithm as in the question, but for each block separately (not for the whole array). So after that I needed to add all the results from each block into a[0] in the end. I also replaced my sum operator with atomicAdd to ensure the correct adding between blocks (in the end).

Related

PyCUDA how to get the number of used registers per thread when launching the kernels?

I have a kernel, how can I get the number of used registers per thread when launching the kernels? I mean in a PyCuda way.
A simple example will be:
__global__
void
make_blobs(float* matrix, float2 *pts, int num_pts, float sigma, int rows, int cols) {
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
if (x < cols && y < rows) {
int idx = y*cols + x;
float temp = 0.f;
for (int i = 0; i < num_pts; i++) {
float x_0 = pts[i].x;
float y_0 = pts[i].y;
temp += exp(-(pow(x - x_0, 2) + pow(y - y_0, 2)) / (2 * sigma*sigma));
}
matrix[idx] = temp;
}
}
Is there anyway to get the number without crashing the program if the real number used has exceeded the max?
The above is OK, it dose not exceed the max in my machine. I just want to get the number in a convenient way. Thanks!
PyCuda already provides this as part of the Cuda function object. The property is called pycuda.driver.Function.num_regs.
Below is a small example that shows how to use it:
import pycuda.autoinit
from pycuda.compiler import SourceModule
kernel_src = """
__global__ void
make_blobs(float* matrix, float2 *pts, int num_pts, float sigma, int rows, int cols) {
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
if (x < cols && y < rows) {
int idx = y*cols + x;
float temp = 0.f;
for (int i = 0; i < num_pts; i++) {
float x_0 = pts[i].x;
float y_0 = pts[i].y;
temp += exp(-(pow(x - x_0, 2) + pow(y - y_0, 2)) / (2 * sigma*sigma));
}
matrix[idx] = temp;
}
}"""
compiledKernel = SourceModule(kernel_src)
make_blobs = compiledKernel.get_function("make_blobs")
print(make_blobs.num_regs)
Note that you don't need to use SourceModule. You can also load the module from e.g. a cubin file. More details can be found in the documentation.

CUDA In-place Transpose Error

I'm implementing a CUDA program for transposing an image. I created 2 kernels. The first kernel does out of place transposition and works perfectly for any image size.
Then I created a kernel for in-place transposition of square images. However, the output is incorrect. The lower triangle of the image is transposed but the upper triangle remains the same. The resulting image has a stairs like pattern in the diagonal and the size of each step of the stairs is equal to the 2D block size which I used for my kernel.
Out-of-Place Kernel:
Works perfectly for any image size if src and dst are different.
template<typename T, int blockSize>
__global__ void kernel_transpose(T* src, T* dst, int width, int height, int srcPitch, int dstPitch)
{
__shared__ T block[blockSize][blockSize];
int col = blockIdx.x * blockSize + threadIdx.x;
int row = blockIdx.y * blockSize + threadIdx.y;
if((col < width) && (row < height))
{
int tid_in = row * srcPitch + col;
block[threadIdx.y][threadIdx.x] = src[tid_in];
}
__syncthreads();
col = blockIdx.y * blockSize + threadIdx.x;
row = blockIdx.x * blockSize + threadIdx.y;
if((col < height) && (row < width))
{
int tid_out = row * dstPitch + col;
dst[tid_out] = block[threadIdx.x][threadIdx.y];
}
}
In-Place Kernel:
template<typename T, int blockSize>
__global__ void kernel_transpose_inplace(T* srcDst, int width, int pitch)
{
__shared__ T block[blockSize][blockSize];
int col = blockIdx.x * blockDim.x + threadIdx.x;
int row = blockIdx.y * blockDim.y + threadIdx.y;
int tid_in = row * pitch + col;
int tid_out = col * pitch + row;
if((row < width) && (col < width))
block[threadIdx.x][threadIdx.y] = srcDst[tid_in];
__threadfence();
if((row < width) && (col < width))
srcDst[tid_out] = block[threadIdx.x][threadIdx.y];
}
Wrapper Function:
int transpose_8u_c1(unsigned char* pSrcDst, int width,int pitch)
{
//pSrcDst is allocated using cudaMallocPitch
dim3 block(16,16);
dim3 grid;
grid.x = (width + block.x - 1)/block.x;
grid.y = (width + block.y - 1)/block.y;
kernel_transpose_inplace<unsigned char,16><<<grid,block>>>(pSrcDst,width,pitch);
assert(cudaSuccess == cudaDeviceSynchronize());
return 1;
}
Sample Input & Wrong Output:
I know this problem has something to do with the logic of in-place transpose. This is because my out of place transpose kernel which is working perfectly for different source and destination, also gives the same wrong result if I pass it a single pointer for source and destination.
What am I doing wrong? Help me in correcting the In-place kernel.
Your in-place kernel is overwriting data in the image that will be subsequently picked up by another thread to use for its transpose operation. So for a square image, you should buffer the destination data before overwriting it, then place the destination data in it's proper transposed location. Since we're doing effectively 2 copies per thread using this method, there's only a need to use half as many threads. Something like this should work:
template<typename T, int blockSize>
__global__ void kernel_transpose_inplace(T* srcDst, int width, int pitch)
{
int col = blockIdx.x * blockDim.x + threadIdx.x;
int row = blockIdx.y * blockDim.y + threadIdx.y;
int tid_in = row * pitch + col;
int tid_out = col * pitch + row;
if((row < width) && (col < width) && (row<col)) {
T temp = srcDst[tid_out];
srcDst[tid_out] = srcDst[tid_in];
srcDst[tid_in] = temp;
}
}

Get statistics for a list of numbers using GPU

I have several lists of numbers on a file . For example,
.333, .324, .123 , .543, .00054
.2243, .333, .53343 , .4434
Now, I want to get the number of times each number occurs using the GPU. I believe this will be faster to do on the GPU than the CPU because each thread can process one list. What data structure should I use on the GPU to easily get the above counts. For example , for the above, the answer will look as follows:
.333 = 2 times in entire file
.324 = 1 time
etc..
I looking for a general solution. Not one that works only on devices with specific compute capability
Just writing kernel suggested by Pavan to see if I have implemented it efficiently:
int uniqueEle = newend.valiter – d_A;
int* count;
cudaMalloc((void**)&count, uniqueEle * sizeof(int)); // stores the count of each unique element
int TPB = 256;
int blocks = uniqueEle + TPB -1 / TPB;
//Cast d_I to raw pointer called d_rawI
launch<<<blocks,TPB>>>(d_rawI,count,uniqueEle);
__global__ void launch(int *i, int* count, int n){
int id = blockDim.x * blockIdx.x + threadIdx.x;
__shared__ int indexes[256];
if(id < n ){
indexes[threadIdx.x] = i[id];
//as occurs between two blocks
if(id % 255 == 0){
count[indexes] = i[id+1] - i[id];
}
}
__syncthreads();
if(id < ele - 1){
if(threadIdx.x < 255)
count[id] = indexes[threadIdx.x+1] – indexes[threadIdx.x];
}
}
Question: how to modify this kernel so that it handles arrays of arbitrary size. I.e , handle the condition when the total number of threads < number of elements
Here is how I would do the code in matlab
A = [333, .324, .123 , .543, .00054 .2243, .333, .53343 , .4434];
[values, locations] = unique(A); % Find unique values and their locations
counts = diff([0, locations]); % Find the count based on their locations
There is no easy way to do this in plain cuda, but you can use existing libraries to do this.
1) Thrust
It is also being shipped with CUDA toolkit from CUDA 4.0.
The matlab code can be roughly translated into thrust by using the following functions. I am not too proficient with thrust, but I am just trying to give you an idea on what routines to look at.
float _A[] = {.333, .324, .123 , .543, .00054 .2243, .333, .53343 , .4434};
int _I[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
float *A, *I;
// Allocate memory on device and cudaMempCpy values from _A to A and _I to I
int num = 9;
// Values vector
thrust::device_vector<float>d_A(A, A+num);
// Need to sort to get same values together
thrust::stable_sort(d_A, d_A+num);
// Vector containing 0 to num-1
thrust::device_vector<int>d_I(I, I+num);
// Find unique values and elements
thrust::device_vector<float>d_Values(num), d_Locations(num), d_counts(num);
// Find unique elements
thrust::device_vector<float>::iterator valiter;
thrust::device_vector<int>::iterator idxiter;
thrust::pair<valiter, idxiter> new_end;
new_end = thrust::unique_by_key(d_A, d_A+num, d_I, d_Values, d_Locations);
You now have the locations of the first instance of each unique value. You can now launch a kernel to find the differences between adjacent elements from 0 to new_end in d_Locations. Subtract the final value from num to get the count for final location.
EDIT (Adding code that was provided over chat)
Here is how the difference code needs to be done
#define MAX_BLOCKS 65535
#define roundup(A, B) = (((A) + (B) - 1) / (B))
int uniqueEle = newend.valiter – d_A;
int* count;
cudaMalloc((void**)&count, uniqueEle * sizeof(int));
int TPB = 256;
int num_blocks = roundup(uniqueEle, TPB);
int blocks_y = roundup(num_blocks, MAX_BLOCKS);
int blocks_x = roundup(num_blocks, blocks_y);
dim3 blocks(blocks_x, blocks_y);
kernel<<<blocks,TPB>>>(d_rawI, count, uniqueEle);
__global__ void kernel(float *i, int* count, int n)
{
int tx = threadIdx.x;
int bid = blockIdx.y * gridDim.x + blockIdx.x;
int id = blockDim.x * bid + tx;
__shared__ int indexes[256];
if (id < n) indexes[tx] = i[id];
__syncthreads();
if (id < n - 1) {
if (tx < 255) count[id] = indexes[tx + 1] - indexes[tx];
else count[id] = i[id + 1] - indexes[tx];
}
if (id == n - 1) count[id] = n - indexes[tx];
return;
}
2) ArrayFire
This is an easy to use, free array based library.
You can do the following in ArrayFire.
using namespace af;
float h_A[] = {.333, .324, .123 , .543, .00054 .2243, .333, .53343 , .4434};
int num = 9;
// Transfer data to device
array A(9, 1, h_A);
array values, locations, original;
// Find the unique values and locations
setunique(values, locations, original, A);
// Locations are 0 based, add 1.
// Add *num* at the end to find count of last value.
array counts = diff1(join(locations + 1, num));
Disclosure: I work for AccelerEyes, that develops this software.
To answer the latest addenum to this question - the diff kernel which would complete the thrust method proposed by Pavan could look something like this:
template<int blcksz>
__global__ void diffkernel(const int *i, int* count, const int n) {
int id = blockDim.x * blockIdx.x + threadIdx.x;
int strd = blockDim.x * gridDim.x;
int nmax = blcksz * ((n/blcksz) + ((n%blcksz>0) ? 1 : 0));
__shared__ int indices[blcksz+1];
for(; id<nmax; id+=strd) {
// Data load
indices[threadIdx.x] = (id < n) ? i[id] : n;
if (threadIdx.x == (blcksz-1))
indices[blcksz] = ((id+1) < n) ? i[id+1] : n;
__syncthreads();
// Differencing calculation
int diff = indices[threadIdx.x+1] - indices[threadIdx.x];
// Store
if (id < n) count[id] = diff;
__syncthreads();
}
}
here is a solution:
__global__ void counter(float* a, int* b, int N)
{
int idx = blockIdx.x*blockDim.x+threadIdx.x;
if(idx < N)
{
float my = a[idx];
int count = 0;
for(int i=0; i < N; i++)
{
if(my == a[i])
count++;
}
b[idx]=count;
}
}
int main()
{
int threads = 9;
int blocks = 1;
int N = blocks*threads;
float* h_a;
int* h_b;
float* d_a;
int* d_b;
h_a = (float*)malloc(N*sizeof(float));
h_b = (int*)malloc(N*sizeof(int));
cudaMalloc((void**)&d_a,N*sizeof(float));
cudaMalloc((void**)&d_b,N*sizeof(int));
h_a[0]= .333f;
h_a[1]= .324f;
h_a[2]= .123f;
h_a[3]= .543f;
h_a[4]= .00054f;
h_a[5]= .2243f;
h_a[6]= .333f;
h_a[7]= .53343f;
h_a[8]= .4434f;
cudaMemcpy(d_a,h_a,N*sizeof(float),cudaMemcpyHostToDevice);
counter<<<blocks,threads>>>(d_a,d_b,N);
cudaMemcpy(h_b,d_b,N*sizeof(int),cudaMemcpyDeviceToHost);
for(int i=0; i < N; i++)
{
printf("%f = %d times\n",h_a[i],h_b[i]);
}
cudaFree(d_a);
cudaFree(d_b);
free(h_a);
free(h_b);
getchar();
return 0;
}

Calculating differences between consecutive indices fast

Given that I have the array
Let Sum be 16
dintptr = { 0 , 2, 8,11,13,15}
I want to compute the difference between consecutive indices using the GPU. So the final array should be as follows:
count = { 2, 6,3,2,2,1}
Below is my kernel:
//for this function n is 6
__global__ void kernel(int *dintptr, int * count, int n){
int id = blockDim.x * blockIdx.x + threadIdx.x;
__shared__ int indexes[256];
int need = (n % 256 ==0)?0:1;
int allow = 256 * ( n/256 + need);
while(id < allow){
if(id < n ){
indexes[threadIdx.x] = dintptr[id];
}
__syncthreads();
if(id < n - 1 ){
if(threadIdx.x % 255 == 0 ){
count[id] = indexes[threadIdx.x + 1] - indexes[threadIdx.x];
}else{
count[id] = dintptr[id+1] - dintptr[id];
}
}//end if id<n-1
__syncthreads();
id+=(gridDim.x * blockDim.x);
}//end while
}//end kernel
// For last element explicitly set count[n-1] = SUm - dintptr[n-1]
2 questions:
Is this kernel fast. Can you suggest a faster implementation?
Does this kernel handle arrays of arbitrary size ( I think it does)
I'll bite.
__global__ void kernel(int *dintptr, int * count, int n)
{
for (int id = blockDim.x * blockIdx.x + threadIdx.x;
id < n-1;
id += gridDim.x * blockDim.x)
count[id] = dintptr[id+1] - dintptr[i];
}
(Since you said you "explicitly" set the value of the last element, and you didn't in your kernel, I didn't bother to set it here either.)
I don't see a lot of advantage to using shared memory in this kernel as you do: the L1 cache on Fermi should give you nearly the same advantage since your locality is high and reuse is low.
Both your kernel and mine appear to handle arbitrary-sized arrays. Yours however appears to assume blockDim.x == 256.

CUDA kernel - nested for loop

Hello
I'm trying to write a CUDA kernel to perform the following piece of code.
for (n = 0; n < (total-1); n++)
{
a = values[n];
for ( i = n+1; i < total ; i++)
{
b = values[i] - a;
c = b*b;
if( c < 10)
newvalues[i] = c;
}
}
This is what I have currently, but it does not seem to be giving the correct results? does anyone know what I'm doing wrong. Cheers
__global__ void calc(int total, float *values, float *newvalues){
float a,b,c;
int idx = blockIdx.x * blockDim.x + threadIdx.x;
for (int n = idx; n < (total-1); n += blockDim.x*gridDim.x){
a = values[n];
for(int i = n+1; i < total; i++){
b = values[i] - a;
c = b*b;
if( c < 10)
newvalues[i] = c;
}
}
Realize this problem in 2D and launch your kernel with 2D thread blocks. The total number of threads in x and y dimension will be equal to total . The kernel code should look like this:
__global__ void calc(float *values, float *newvalues, int total){
float a,b,c;
int n= blockIdx.y * blockDim.y + threadIdx.y;
int i= blockIdx.x * blockDim.x + threadIdx.x;
if (n>=total || i>=total)
return;
a = values[n];
b = values[i] - a;
c = b*b;
if( c < 10)
newvalues[i] = c;
// I don't know your problem statement but i think it should be like: newvalues[n*total+i] = c;
}
Update:
This is how you should call the kernel
dim3 block(16,16);
dim3 grid ( (total+15)/16, (total+15)/16 );
calc<<<grid,block>>>(float *val, float *newval, int T);
Also make sure you add this line in kernel (see updated kernel)
if (n>=total || i>=total)
return;
Update 2:
fixed blockIdy.y, correct is blockIdx.y
I'll probably be way wrong but the n < (total-1) check in
for (int n = idx; n < (total-1); n += blockDim.x*gridDim.x)
seems different than the original version.
Why don't you just remove the outter loop and start the kernel with as many threads as you need for this loop? It's a bit weird to have a loop that depends on your blockId. Normally you try to avoid these loops.
Secondly it seems to me that newvalues[i] can be overriden by different threads.