I am trying to write a constructor for a derived type of an abstract one to solve this other question, but it seems that it's not working, or better, it isn't called at all.
The aim is to have a runtime polymorphism setting the correct number of legs of an animal.
These are the two modules:
animal
module animal_module
implicit none
type, abstract :: animal
private
integer, public :: nlegs = -1
contains
procedure :: legs
end type animal
contains
function legs(this) result(n)
class(animal), intent(in) :: this
integer :: n
n = this%nlegs
end function legs
cat
module cat_module
use animal_module, only : animal
implicit none
type, extends(animal) :: cat
private
contains
procedure :: setlegs => setlegs
end type cat
interface cat
module procedure init_cat
end interface cat
contains
type(cat) function init_cat(this)
class(cat), intent(inout) :: this
print *, "Cat!"
this%nlegs = -4
end function init_cat
main program
program oo
use animal_module
use cat_module
implicit none
type(cat) :: c
type(bee) :: b
character(len = 3) :: what = "cat"
class(animal), allocatable :: q
select case(what)
case("cat")
print *, "you will see a cat"
allocate(cat :: q)
q = cat() ! <----- this line does not change anything
case default
print *, "ohnoes, nothing is prepared!"
stop 1
end select
print *, "this animal has ", q%legs(), " legs."
print *, "cat animal has ", c%legs(), " legs."
end program
The constructor isn't called at all, and the number of legs still remains to -1.
The available non-default constructor for the cat type is given by the module procedure init_cat. This function you have defined like
type(cat) function init_cat(this)
class(cat), intent(inout) :: this
end function init_cat
It is a function with one argument, of class(cat). In your later reference
q = cat()
There is no specific function under the generic cat which matches that reference: the function init_cat does not accept a no-argument reference. The default structure constructor is instead used.
You must reference the generic cat in a way matching your init_cat interface to have that specific function called.
You want to change your init_cat function to look like
type(cat) function init_cat()
! print*, "Making a cat"
init_cat%nlegs = -4
end function init_cat
Then you can reference q=cat() as desired.
Note that in the original, you are attempting to "construct" a cat instance, but you aren't returning this constructed entity as the function result. Instead, you are modifying an argument (already constructed). Structure constructors are intended to be used returning such useful things.
Note also that you don't need to
allocate (cat :: q)
q = cat()
The intrinsic assignment to q already handles q's allocation.
FWIW, here is some sample code comparing three approaches (method = 1: sourced allocation, 2: polymorphic assignment, 3: mixed approach).
module animal_module
implicit none
type, abstract :: animal_t
integer :: nlegs = -1
contains
procedure :: legs !! defines a binding to some procedure
endtype
contains
function legs(this) result(n)
class(animal_t), intent(in) :: this
!! The passed variable needs to be declared as "class"
!! to use this routine as a type-bound procedure (TBP).
integer :: n
n = this % nlegs
end
end
module cat_module
use animal_module, only : animal_t
implicit none
type, extends(animal_t) :: cat_t
endtype
interface cat_t !! overloads the definition of cat_t() (as a procedure)
module procedure make_cat
end interface
contains
function make_cat() result( ret ) !! a usual function
type(cat_t) :: ret !<-- returns a concrete-type object
ret % nlegs = -4
end
end
program main
use cat_module, only: cat_t, animal_t
implicit none
integer :: method
type(cat_t) :: c
class(animal_t), allocatable :: q
print *, "How to create a cat? [method = 1,2,3]"
read *, method
select case ( method )
case ( 1 )
print *, "1: sourced allocation"
allocate( q, source = cat_t() )
!! An object created by a function "cat_t()" is used to
!! allocate "q" with the type and value taken from source=.
!! (Empirically most stable for different compilers/versions.)
case ( 2 )
print *, "2: polymorphic assignment"
q = cat_t()
!! Similar to sourced allocation. "q" is automatically allocated.
!! (Note: Old compilers may have bugs, so tests are recommended...)
case ( 3 )
print *, "3: mixed approach"
allocate( cat_t :: q )
q = cat_t()
!! First allocate "q" with a concrete type "cat_t"
!! and then assign a value obtained from cat_t().
case default ; stop "unknown method"
endselect
c = cat_t()
!! "c" is just a concrete-type variable (not "allocatable")
!! and assigned with a value obtained from cat_t().
print *, "c % legs() = ", c % legs()
print *, "q % legs() = ", q % legs()
end
--------------------------------------------------
Test
$ gfortran test.f90 # using version 8 or 9
$ echo 1 | ./a.out
How to create a cat? [method = 1,2,3]
1: sourced allocation
c % legs() = -4
q % legs() = -4
$ echo 2 | ./a.out
How to create a cat? [method = 1,2,3]
2: polymorphic assignment
c % legs() = -4
q % legs() = -4
$ echo 3 | ./a.out
How to create a cat? [method = 1,2,3]
3: mixed approach
c % legs() = -4
q % legs() = -4
--------------------------------------------------
Side notes
* It is also OK to directly use make_cat() to generate a value of cat_t:
e.g., allocate( q, source = make_cat() ) or q = make_cat().
In this case, we do not need to overload cat_t() via interface.
* Another approach is to write an "initializer" as a type-bound procedure,
and call it explicitly as q % init() (after allocating it via
allocate( cat_t :: q )). If the type contains pointer components,
this approach may be more straightforward by avoiding copy of
components (which can be problematic for pointer components).
Related
I was trying to create a program that requires me to use matrices as input for functions and subroutines and also requires me to take matrix as subroutine output in Fortran. But, I've encountered multiple errors while doing so. I am not able to understand the source of these errors and hence how to fix them.
I'm confident of the logic but I seem to be making errors in dealing with the matrices.
Program to solve system of linear equations(Gauss elimination with partial pivoting)
Code:
program solving_equations
implicit none
real, allocatable :: a(:,:),interchanged(:,:)
real, allocatable :: x(:)
real addition,multiplying_term,alpha,maximum
integer i,j,row,rth_ele,f_maxfinder,k,n,s,inte
read(*,*)n
allocate( a( n,(n+1) ) )
allocate( x(n) )
allocate( interchanged( n,(n+1) ) )
do i=1,n
read(*,*)( a(i,j),j=1,(n+1) )
end do
do rth_ele= 1,(n-1)
row=f_maxfinder( a , n , rth_ele )
if (row==rth_ele) then
continue
else
call interchanger(a,rth_ele,row,n,interchanged)
a = interchanged
end if
do i= (rth_ele+1) , n
! once i is fixed, multiplying term is fixed too
multiplying_term=( a(i,rth_ele)/a(rth_ele,rth_ele) )
do j=1,(n+1)
a(i,j)=a(i,j)-a(rth_ele,j)*multiplying_term
end do
end do
end do
x(n)=a(n,n+1)/a(n,n)
do i=(n-1),1,-1
addition=0.0
do s=n , (i+1) , -1
addition=addition+a(i,s)*x(s)
end do
x(i)= ( ( a(i,n+1)- addition )/a(i,i) )
end do
do i=1,n
print*,x(i)
end do
endprogram solving_equations
!=================
function f_maxfinder(a,n,rth_ele)
integer inte,f_maxfinder
real maximum
maximum=a(rth_ele,rth_ele)
do inte=n,nint(rth_ele+1),-1
if( a(inte,rth_ele) > maximum ) then
maximum = a(inte,rth_ele)
f_maxfinder=inte
else
continue
end if
end do
end
subroutine interchanger( a,rth_ele,row,n,interchanged )
integer i
real alpha
real, allocatable :: interchanged(:,:)
allocate( interchanged( n,(n+1) ) )
do i=1,n+1
alpha=a(row,i)
a(row,i)=a(rth_ele,i)
a(rth_ele,i)=alpha
end do
do i=1,n
do j=1,(n+1)
interchanged(i,j)=a(i,j)
end do
end do
end
Errors:
row=f_maxfinder( a , n , rth_ele )
1
Warning: Rank mismatch in argument 'a' at (1) (scalar and rank-2)
a(row,i)=a(rth_ele,i)
Error: The function result on the lhs of the assignment at (1) must have the pointer attribute.
a(rth_ele,i)=alpha
Error: The function result on the lhs of the assignment at (1) must have the pointer attribute.
call interchanger(a,rth_ele,row,n,interchanged)
1
Error: Explicit interface required for 'interchanger' at (1): allocatable argument
Thanks!
You're missing a declaration of a as an array in f_maxfinder. implicit none is your friend - be sure to use it all the time.
interchanger has a dummy argument interchanged that is an allocatable, assumed-shape array. This requires that an explicit interface to interchanger be visible in the caller. (See my post https://stevelionel.com/drfortran/2012/01/05/doctor-fortran-gets-explicit-again/ for more on this.
The interface issue could be solved by putting the subroutines in a module and adding a use of the module in the main program.
By the way, there's no need to make a allocatable in f_maxfinder, as you are not allocating or deallocating it. It is still an assumed-shape array so the explicit interface is still required.
Here is a working example taking into account #SteveLionel's advice and the following comments:
Always use implicit none, at least once in the main program and don't forget to pass the -warn flag to the compiler.
Either use a module for functions and subroutines, then add use <module> to the main program, or simply use contains and include them inside the main program as I did below.
The interchanged array is already alcated in the main program, you don't need to re-allocate it in the interchanger subroutine, just pass it as an assumed-shape array.
Remove unused variables; alpha, maximum, k, inte.
Define a in f_maxfinder function.
Function type is better written in front of the function name for readability; see your definition of f_maxfinder and don't declare the function again in main program, unless you're using an explicit interface.
The nint procedure accepts real input, you don't need it here.
Finally add any missing variable declarations in your function/subroutine.
program solving_equations
implicit none
real, allocatable :: a(:,:), interchanged(:,:), x(:)
real :: addition, multiplying_term
integer :: i, j, row, rth_ele, n, s
read (*,*) n
allocate ( a( n,(n+1) ) )
allocate ( x( n ) )
allocate ( interchanged( n,(n+1) ) )
do i = 1,n
do j = 1,(n+1)
read (*,*) a(i,j)
end do
end do
do rth_ele = 1,(n-1)
row = f_maxfinder( a , n , rth_ele )
if (row == rth_ele) then
continue
else
call interchanger(a, rth_ele, row, n, interchanged)
a = interchanged
end if
do i = (rth_ele+1) , n
! once i is fixed, multiplying term is fixed too
multiplying_term = a(i,rth_ele) / a(rth_ele,rth_ele)
do j = 1,(n+1)
a(i,j) = a(i,j) - a(rth_ele,j) * multiplying_term
end do
end do
end do
x(n) = a(n,n+1) / a(n,n)
do i = (n-1),1,-1
addition = 0.0
do s = n,(i+1),-1
addition = addition + a(i,s) * x(s)
end do
x(i)= (a(i,n+1) - addition) / a(i,i)
end do
do i = 1,n
print *, x(i)
end do
contains
integer function f_maxfinder(a, n, rth_ele)
integer :: n, rth_ele, inte
real :: maximum, a(:,:)
maximum = a(rth_ele,rth_ele)
do inte = n,rth_ele+1,-1
if (a(inte,rth_ele) > maximum) then
maximum = a(inte,rth_ele)
f_maxfinder = inte
else
continue
end if
end do
end
subroutine interchanger( a, rth_ele, row, n, interchanged )
integer :: i, rth_ele, row, n
real :: alpha, a(:,:), interchanged(:,:)
do i = 1,n+1
alpha = a(row,i)
a(row,i) = a(rth_ele,i)
a(rth_ele,i) = alpha
end do
do i = 1,n
do j = 1,(n+1)
interchanged(i,j) = a(i,j)
end do
end do
end
end program solving_equations
Entering a sample 3-by-4 array, you get the following output (check the results, you know your algorithm):
3
4
3
6
3
7
4
6
7
4
4
2
0
2.05263186
-2.15789509
0.210526198
Process returned 0 (0x0) execution time : 1.051 s
Press any key to continue.
I'm trying to learn Fortran (unfortunately a necessity for my research group) - one of the tasks I set myself was to package one of the necessary functions (Associated Legendre polynomials) from the Numerical Recipes book into a fortran 03 compliant module. The original program (f77) has some error handling in the form of the following:
if(m.lt.0.or.m.gt.1.or.abs(x).gt.1)pause 'bad arguments in plgndr'
Pause seems to have been deprecated since f77 as using this line gives me a compiling error, so I tried the following:
module sha_helper
implicit none
public :: plgndr, factorial!, ylm
contains
! numerical recipes Associated Legendre Polynomials rewritten for f03
function plgndr(l,m,x) result(res_plgndr)
integer, intent(in) :: l, m
real, intent(in) :: x
real :: res_plgndr, fact, pll, pmm, pmmp1, somx2
integer :: i,ll
if (m.lt.0.or.m.gt.l.or.abs(x).gt.1) then
write (*, *) "bad arguments to plgndr, aborting", m, x
res_plgndr=-10e6 !return a ridiculous value
else
pmm = 1.
if (m.gt.0) then
somx2 = sqrt((1.-x)*(1.+x))
fact = 1.
do i = 1, m
pmm = -pmm*fact*somx2
fact = fact+2
end do
end if
if (l.eq.m) then
res_plgndr = pmm
else
pmmp1 = x*(2*m+1)*pmm
if(l.eq.m+1) then
res_plgndr = pmmp1
else
do ll = m+2, l
pll = (x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)
pmm = pmmp1
pmmp1 = pll
end do
res_plgndr = pll
end if
end if
end if
end function plgndr
recursive function factorial(n) result(factorial_result)
integer, intent(in) :: n
integer, parameter :: RegInt_K = selected_int_kind(20) !should be enough for the factorials I am using
integer (kind = RegInt_K) :: factorial_result
if (n <= 0) then
factorial_result = 1
else
factorial_result = n * factorial(n-1)
end if
end function factorial
! function ylm(l,m,theta,phi) result(res_ylm)
! integer, intent(in) :: l, m
! real, intent(in) :: theta, phi
! real :: res_ylm, front_block
! real, parameter :: pi = 3.1415926536
! front_block = sqrt((2*l+1)*factorial(l-abs(m))/(4*pi*))
! end function ylm
end module sha_helper
The main code after the else works, but if I execute my main program and call the function with bad values, the program freezes before executing the print statement. I know that the print statement is the problem, as commenting it out allows the function to execute normally, returning -10e6 as the value. Ideally, I would like the program to crash after giving a user readable error message, as giving bad values to the plgndr function is a fatal error for the program. The function plgndr is being used by the program sha_lmc. Currently all this does is read some arrays and then print a value of plgndr for testing (early days). The function ylm in the module sha_helper is also not finished, hence it is commented out. The code compiles using gfortran sha_helper.f03 sha_lmc.f03 -o sha_lmc, and
gfortran --version
GNU Fortran (GCC) 4.8.2
!Spherical Harmonic Bayesian Analysis testbed for Lagrangian Dynamical Monte Carlo
program sha_analysis
use sha_helper
implicit none
!Analysis Parameters
integer, parameter :: harm_order = 6
integer, parameter :: harm_array_length = (harm_order+1)**2
real, parameter :: coeff_lo = -0.1, coeff_hi = 0.1, data_err = 0.01 !for now, data_err fixed rather than heirarchical
!Monte Carlo Parameters
integer, parameter :: run = 100000, burn = 50000, thin = 100
real, parameter :: L = 1.0, e = 1.0
!Variables needed by the program
integer :: points, r, h, p, counter = 1
real, dimension(:), allocatable :: x, y, z
real, dimension(harm_array_length) :: l_index_list, m_index_list
real, dimension(:,:), allocatable :: g_matrix
!Open the file, allocate the x,y,z arrays and read the file
open(1, file = 'Average_H_M_C_PcP_boschi_1200.xyz', status = 'old')
read(1,*) points
allocate(x(points))
allocate(y(points))
allocate(z(points))
print *, "Number of Points: ", points
readloop: do r = 1, points
read(1,*) x(r), y(r), z(r)
end do readloop
!Set up the forwards model
allocate(g_matrix(harm_array_length,points))
!Generate the l and m values of spherical harmonics
hloop: do h = 0, harm_order
ploop: do p = -h,h
l_index_list(counter) = h
m_index_list(counter) = p
counter = counter + 1
end do ploop
end do hloop
print *, plgndr(1,2,0.1)
!print *, ylm(1,1,0.1,0.1)
end program sha_analysis
Your program does what is known as recursive IO - the initial call to plgndr is in the output item list of an IO statement (a print statement) [directing output to the console] - inside that function you then also attempt to execute another IO statement [that outputs to the console]. This is not permitted - see 9.11p2 and p3 of F2003 or 9.12p2 of F2008.
A solution is to separate the function invocation from the io statement in the main program, i.e.
REAL :: a_temporary
...
a_temporary = plgndr(1,2,0.1)
PRINT *, a_temporary
Other alternatives in F2008 (but not F2003 - hence the [ ] parts in the first paragraph) include directing the output from the function to a different logical unit (note that WRITE (*, ... and PRINT ... reference the same unit).
In F2008 you could also replace the WRITE statement with a STOP statement with a message (the message must be a constant - which wouldn't let you report the problematic values).
The potential for inadvertently invoking recursive IO is part of the reason that some programming styles discourage conducting IO in functions.
Try:
if (m.lt.0.or.m.gt.l.or.abs(x).gt.1) then
write (*, *) "bad arguments to plgndr, aborting", m, x
stop
else
...
end if
I'm trying to understand why one of the below is allowed by the standard while the other is not. They don't seem different except for boilerplate code to me. I feel like I'm misunderstanding something, or that there is a better way of doing it. Any help would be appreciated.
Not allowed:
real :: x
class(*) :: temp
x = 4
temp = genericAssignment(x)
select type(temp)
type is(real)
write(*,*) temp
end select
contains
function genericAssignment(a) result(b)
class(*) :: a
class(*) :: b
allocate(b, source=a)
end function genericAssignment
Allowed:
Type GenericContainer
class(*), pointer :: gen
End Type
real :: x
class(*) :: ptr
type(GenericContainer) :: temp
x = 4
temp = genericAssignment(x)
select type(ptr => temp%gen)
type is(real)
write(*,*) ptr
end select
contains
function genericAssignment(a) result(b)
class(*) :: a
type(GenericContainer) :: b
allocate(b%gen, source=a)
end function genericAssignment
The current standard allows both.
The "allowed" code block has a function with a non-polymorphic result, with the result of evaluating the function being assigned to a non-polymorphic variable. This is valid Fortran 2003.
The "not allowed" block has a function with a polymorphic result, with the result of evaluating the function being assigned to a polymorphic variable. This is valid Fortran 2008.
Note that the number of complete Fortran 2008 compiler implementations out there is small.
~~~
The function in the "not allowed" block is somewhat pointless - the code block is equivalent to:
real :: x
class(*) :: temp
x = 4
temp = x
select type(temp)
type is(real)
write(*,*) temp
end select
I'd like to have my code take code written in another document, read it, and then use it as though it was written in the code. Say we have the following:
MODULE samplemod
CONTAINS
FUNCTION sillysum(boudary,function) RESULT(counter)
IMPLICIT NONE
REAL(KIND=8) :: boundary, counter
REAL(KIND=8), DIMENSION(:) :: function
INTEGER :: m
counter = 0.d0
DO m = 1, my_mesh%me
counter = function(m) + externalfunction
END DO
END FUNCTION sillysum
END MODULE samplemod
PROGRAM sampleprogram
USE samplemod
REAL(KIND=8), DIMENSION(:) :: function1
ALLOCATE(function1(100))
DO m=1, 100
function1(i) = i
END DO
WRITE(*,*) sillysum(100,function1)
END PROGRAM sampleprogram
Where in some external file (say 'externfunct.txt') one has written m**2. How can the Fortran code read the external function m**2, SIN(m), or even 0 and have that replace externalfunction. Here's a simpler example:
REAL(KIND=8) :: x = 2
CHARACTER(LEN=*) :: strng = "external"
WRITE(*,*) "Hello world, 2 + ", strng, " = ", 2 + external
Where in a txt file I have written I have written SIN(x).
I think there are two different approaches for this (* in fact, there seems a "third" approach also, see EDIT); one is to use a shared library, and the other is to use a parser for math expressions. The first approach is described in a Rossetastone page (Call a function in a shared library) and an SO page (Fortran dynamic libraries, load at runtime?), for example. For the second approach, you can find 3rd-party libraries by searching with "math parser" or "Fortran math parser" etc. Here, I have tried this one because it seems pretty simple (only one module and no installation). If we write a simple test program like this
program test
use interpreter, only: init, evaluate, dp => realkind
implicit none
integer, parameter :: mxvars = 10 !! consider 10 variables at most here
character(10) :: symbols( mxvars )
real(dp) :: values( mxvars ), answer
character(1000) :: funcstr !! a user-defined math expression
character(5) :: stat
!> Define variable names.
symbols( 1 ) = "x"
symbols( 2 ) = "a"
symbols( 3 ) = "b"
symbols( 4 ) = "c"
symbols( 5 ) = "foo"
!> Get a math expression.
print *, "Please input a math expression:"
read(*, "(a)") funcstr !! e.g., a * x + b
!> Init the evaluator.
call init( funcstr, symbols, stat )
if ( stat /= "ok" ) stop "stat /= ok"
!> Set values for the variables.
values( : ) = 0
values( 1 ) = 2.0_dp ! x
values( 2 ) = 10.0_dp ! a
values( 3 ) = 7.0_dp ! b
!> Evaluate.
answer = evaluate( values )
print *, "function value = ", answer
end program
and compile it as (*1)
$ gfortran -ffree-line-length-none interpreter.f90 mytest.f90
we can test various expressions as follows:
$ ./a.out
Please input a math expression:
a * x + b
function value = 27.000000000000000
$ ./a.out
Please input a math expression:
sin( a * x ) + cos( b ) + foo
function value = 1.6668475050709324
The usage of other libraries also seems very similar. Because the performance of each library may be rather different, it may be useful to try several different libraries for comparison.
(*1) The module has some lines with sind, cosd, and tand, but they are not supported by gfortran. So, to compile, I have commented them out and replaced them by stop, i.e.,
stop "sind not supported..."
! pdata(st) = sind(pdata(st))
(I guess sind(x) means sin( x * pi / 180 ), so it may be OK to define it as such.)
[EDIT]
A "third" approach may be to call the built-in eval() function in interpreted languages like Python or Julia via system(), e.g., this SO page. Although this also has a lot of weak points (and it is probably much easier to use such languages directly), calling eval() from Fortran might be useful for some specific purposes.
I am encountering an error with the function detailed in this post.
The problem occurs because I am trying to return a type corresponding to the
input types. Can anyone suggest a solution? I originally had a function for each
type, and then a generic interface to group them into the same name. Now I am trying to
put everything in a single function using polymorphism.
Here is the error that gfortran is giving me.
gfortran -o build/lib/foul.o -c -ffree-form -g -J./build/lib lib/foul.f
lib/foul.f:471.45:
Function cassign (expr, a, b, wrn) Result (c)
I have tried to use an allocatable array. In the main program I then do
Character (len=65), Allocatable :: sc(:)
Integer, Allocatable :: ic(:)
Real, Allocatable :: rc(:)
Allocate (sc(1))
Allocate (ic(1))
Allocate (rc(1))
sc = cassign (ra < rb, sa, sb)
ic = cassign (ra < rb, ia, ib)
rc = cassign (ra < rb, ra, rb)
This returns the following error
gfortran -o build/utests/test_foul.o -c -ffree-form -g -J./build/lib utests/test_foul.f
utests/test_foul.f:315.7:
sc = cassign (ra < rb, sa, sb)
1
Error: Can't convert CLASS(*) to CHARACTER(1) at (1)
utests/test_foul.f:316.7:
ic = cassign (ra < rb, ia, ib)
1
Error: Can't convert CLASS(*) to INTEGER(4) at (1)
utests/test_foul.f:317.7:
rc = cassign (ra < rb, ra, rb)
1
Error: Can't convert CLASS(*) to REAL(4) at (1)
1
Error: CLASS variable 'c' at (1) must be dummy, allocatable or pointer
lib/foul.f:495.10:
c = a
1
Error: Nonallocatable variable must not be polymorphic in intrinsic
assignment at (1) - check that there is a matching specific subroutine
for '=' operator
lib/foul.f:497.10:
c = b
1
Here is the function I have coded. The variables a and b can be any of the types
Character, integer or real. And the output type should match the inputs a and b
The function type_match (a, b) returns true if the two types match, false otherwise.
Function cassign (expr, a, b, wrn) Result (c)
Logical, Intent(in) :: expr
Class (*), Intent(in) :: a, b
Logical, Intent (out), Optional :: wrn
Class (*) :: c
Logical :: warn, tma, tmb
!!$ Perform warning tests (performs type matching).
If (Present (wrn)) Then
!!$ Matching input types.
tma = type_match (a, b)
if (tma) Then
tmb = type_match (a, c)
!!$ Matching input and output types.
If (tmb) Then
If (expr) Then
c = a
Else
c = b
End If
wrn = .False.
!!$ Warning: Non-matching types.
Else
wrn = .True.
End If
Else
wrn = .True.
End If
Else
If (expr) Then
c = a
Else
c = b
End If
End If
End Function cassign
I am not sure that I recommend doing what I write below, preferring instead keeping to generics, but I will attempt to explain.
The first thing to note is that, as the error message states, for a non-dummy argument polymorphic variable (such as c) that variable must have the pointer or allocatable attribute. Here, it makes sense for the function result to be allocatable.
After adding the allocatable attribute, you seem to experience two things related to assignment of the allocatable polymorphic variable: once in the function setting the result, and once using the result of the function.
The version of gfortran you are using doesn't (apparently) support intrinsic assignment to polymorphic variables. You can use the equivalent, which arguably has the intention even clearer:
allocate (c, source=a) ! You may also need to provide bounds for c
! for some gfortran.
This is the solution to the assignment problem in the function.
With the function result, however, you are now returning a polymorphic result. That means that the variable taking the assignment must also be polymorphic, or the assignment must not be intrinsic. This is the
Error: Can't convert CLASS(*) to INTEGER(4) at (1)
error when you try intrinsic assignment.
Either make everything polymorphic, stick with generics, or use defined assignment. A simplified example follows for the latter case. [Adjust and extend as required.]
module hello_bob
interface assignment(=)
module procedure int_equal_func_class
end interface
contains
subroutine int_equal_func_class(a,b)
integer, intent(out) :: a(:)
class(*), intent(in) :: b(:)
select type (b)
type is (integer)
a = b
end select
end subroutine int_equal_func_class
function func(a)
class(*), intent(in) :: a(:)
class(*), allocatable :: func(:)
! No intrinsic assignment supported, also see note about bounds
allocate(func, source=a)
end function func
end module hello_bob
program bob
use hello_bob
integer i(4)
i=func([1,2,3,4])
print*, i
end program bob