Which reagent Form 2 component function arguments are in use? - clojurescript

Which form is better?
(defn my-func [arg arg2]
(fn [] [:div (str arg arg2)]))
Or this one?
(defn my-func []
(fn [arg arg2] [:div (str arg arg2)]))
I'm writting from my phone so forgive me indentation...

There's other difference between these functions aside from arity.
The first function will close over arg, and arg2 on first render, and use these arguments for each subsequent rerender. E.g.
(def a 1)
(def b 2)
[my-func a b]
will always result in [:div '12'] whether or not a or b were changed
The second function will take arg, and arg2 on each render and will update the result when arguments change.
Look for Rookie mistake in reagent docs

I believe your question should be which one is correct(The first one is correct). The second one has got an arity exception. Based on your use case, I would prefer to define and call the anonymous function so as to get the results. Consider this number one edit:
(defn my-func [arg arg2]
((fn [] [:div (str arg arg2)])))

Related

How to pass a symbol to a function to create a function in clojure

As a minimal example of what I want to do:
(defn mkfn [func]
(fn func [a] (print "I am a function")))
(mkfn 'x) ; => #function[user/mkfn/func--10871]
(type x)
(x)
The last two both result in:
Syntax error compiling at (conjure-log-12628.cljc:1:1).
Unable to resolve symbol: x in this context
I'm not sure why this doesn't work since fn takes symbols as input and 'x is a symbol. I'm also not sure how to accomplish this task.
For that matter:
user=> (def (eval 'y) 3)
Syntax error compiling def at (conjure-log-12628.cljc:1:1).
user=> (def 'y 3)
Syntax error compiling def at (conjure-log-12628.cljc:1:1).
First argument to def must be a Symbol
First argument to def must be a Symbol
user=> (type 'y)
clojure.lang.Symbol
Other things that don't work:
(defn mkfn [func]
(fn (sympol func) [a] (print "i am a function")))
(symbol "y") ; => y ; a symbol
(def (symbol "y") 3) ; => an err
You will probably need a macro. It seems that you want to call that function by the provided name, so you also have to replace fn with defn.
And you have to be careful about a number of arguments, because function x with argument vector [a] must be called with one argument, and not like (x).
(defmacro mkfn [func]
`(defn ~func [~'a]
(print "I am a function")))
(mkfn x)
=> #'user/x
(x 1)
I am a function=> nil
There is also other way, using intern, so you can completely avoid writing macros:
(intern *ns* 'x (fn [a] (print "I am a function")))
=> #object...
(x 1)
I am a function=> nil
Example with intern:
(defn mkfn [func]
(intern *ns* func (fn [a] (print "I am a function"))))
=> #'user/mkfn
(mkfn 'y)
=> #'user/y
(y 1)
I am a function=> nil
As for your errors, def is a special form, so it has different evaluation rules. It doesn't evaluate the first argument, which has to be a symbol- and (unevaluated) (eval 'y), 'y or (symbol "y") aren't symbols, while y is.
You gonna need a macro for that since you need code writing code.
(defmacro mkfn [func]
`(fn ~func [~'a] ...))
There 2 ways of doing it, either function plus eval or macro. If you really want to programatically create a new function with your chosen name, the macro solution is the way to go.
The function + eval solution is instructive, but you'll have to either quote the function name when you call it (via a 2nd eval) or save the created function in another variable when you create it.
If you are interested in writing macros, please see this other question first: How do I write a Clojure threading macro?
For the function + eval, we can start with my favorite template project and add the following:
(ns tst.demo.core
(:use demo.core tupelo.core tupelo.test))
(defn maker-eval
[fn-sym]
(let [ll (list 'fn 'anon-fn [] (str "I am " fn-sym))]
(spyx :eval ll)
(eval ll)))
(verify
(let [anon-fn-1 (maker-eval 'aaa)]
(is= "I am aaa" (anon-fn-1))) ; need the temp local variable
(let [anon-fn-2 (maker-eval 'bbb)]
(is= "I am bbb" (anon-fn-2))) ; need the temp local variable
)
and we can see the creation and use of the function, along with printed output:
:eval ll => (fn anon-fn [] "I am aaa")
:eval ll => (fn anon-fn [] "I am bbb")
For the macro version, we type
(defn maker-macro-impl
[fn-sym]
(let [ll `(defn ~fn-sym [] (str "I am " (str (quote ~fn-sym))))]
(spyx :macro ll)
ll))
(defmacro maker-macro
[fn-sym] (maker-macro-impl fn-sym))
(verify
(let [anon-fn-3 (maker-macro-impl 'ccc)]
(is= anon-fn-3 (quote
(clojure.core/defn ccc [] (clojure.core/str "I am " (clojure.core/str (quote ccc)))))))
(maker-macro ddd)
(is= (ddd) "I am ddd"))
and see printed:
:macro ll => (clojure.core/defn ccc [] (clojure.core/str "I am " (clojure.core/str (quote ccc))))
Note that the local variable anon-fn-3 was only used to test the maker-macro-impl function, but was not needed to call the newly-created function ddd
at the end of the unit test.

ClojureScript. Reset atom in Reagent when re-render occurs

I'm displaying a set of questions for a quiz test and I'm assigning a number to each question just to number them when they are shown in the browser:
(defn questions-list
[]
(let [counter (atom 0)]
(fn []
(into [:section]
(for [question #(re-frame/subscribe [:questions])]
[display-question (assoc question :counter (swap! counter inc))])))))
The problem is that when someone edits a question in the browser (and the dispatch is called and the "app-db" map is updated) the component is re-rendered but the atom "counter" logically starts from the last number not from zero. So I need to reset the atom but I don't know where. I tried with a let inside the anonymous function but that didn't work.
In this case I'd just remove the state entirely. I haven't tested this code, but your thinking imperatively here. The functional version of what your trying to do is something along the lines of:
Poor but stateless:
(let [numbers (range 0 (count questions))
indexed (map #(assoc (nth questions %) :index %) questions)]
[:section
(for [question indexed]
[display-question question])])
but this is ugly, and nth is inefficient. So lets try one better. Turns out map can take more than one collection as it's argument.
(let [numbers (range 0 (count questions))
indexed (map (fn [idx question] (assoc question :index idx)) questions)]
[:section
(for [question indexed]
[display-question question])])
But even better, turns out there is a built in function for exactly this. What I'd actually write:
[:section
(doall
(map-indexed
(fn [idx question]
[display-question (assoc question :index idx)])
questions))]
Note: None of this code has actually been run, so you might have to tweak it a bit before it works. I'd recommend looking up all of the functions in ClojureDocs to make sure you understand what they do.
If you need counter to be just an index for a question, you could instead use something like this:
(defn questions-list
[]
(let [questions #(re-frame/subscribe [:questions])
n (count questions)]
(fn []
[:section
[:ul
(map-indexed (fn [idx question] ^{:key idx} [:li question]) questions)]])))
Note: here I used [:li question] because I assumed that question is some kind of text.
Also, you could avoid computing the count for questions in this component and do it with a layer 3 subscription:
(ns your-app.subs
(:require
[re-frame.core :as rf]))
;; other subscriptions...
(rf/reg-sub
:questions-count
(fn [_ _]
[(rf/subscribe [:questions])])
(fn [[questions] _]
(count questions)))
Then in the let binding of your component you would need to replace n (count questions) with n #(re-frame/subscribe [:questions-count]).

clojurescript reagent swap! atom negate atom value

i tried to invert a value changeval of a reagent atom
(def changeval(reagent/atom 0))
...
...
[:input {:type "button" :value "Invert!"
:on-click #(swap! changeval(not= changeval0 ) ) }]
nothing happens, how can I make the changeval = NOT(changeval)
Check the signature of swap! function:
(swap! atom f)
(swap! atom f x)
(swap! atom f x y)
(swap! atom f x y & args)
Atomically swaps the value of atom to be:
(apply f current-value-of-atom args). Note that f may be called
multiple times, and thus should be free of side effects. Returns
the value that was swapped in.
Thus to negate the value in the atom (it works the same with Clojure's as well as Reagent's atoms) use not function (in your case there will be no additional args as you will use only the current value of the atom):
(def value (atom true))
(swap! value not)
;; => false
(swap! value not)
;; => true
The third parameter to swap! is a function. So I guess it should be:
#(swap! changeval (partial not= changeval0))
I think changeval0 is a typo and you want a boolean. In this case check out the Piotrek's answer.

Binding the "this" context

Is it possible to bind the this context in ClojureScript?
Right now, I am stuck passing in this to a higher-order function, as in:
(defn generateTransactFunction [this]
(fn [item] (do stuff with this and item)))
This does not feel optimal! I am just learning ClojureScript, so I assume there's something I am missing.
EDIT:
Looks like partial can do the job, as in:
(defn abc [this arg1 arg2] ())
and passing
(partial abc this)
As you mentioned you can use partial if your this parameter at the beginning of the function's parameter list and remaining params will be bound later.
For cases where your this argument position prevents you from using partial you can use anonymous function literal which will be more consise than function literal ((fn [args...] body)):
(defn abc [arg1 arg2 this] ...)
(do-sth #(abc %1 %2 this))

How to build a vector via a call to reduce

I'm trying to figure why this particular function isn't working as expected. I suspect from the error message that it has something to do with the way I'm creating the empty vector for the accumulator.
I have a simple function that returns a sequence of 2-element vectors:
(defn zip-with-index
"Returns a sequence in which each element is of the
form [i c] where i is the index of the element and c
is the element at that index."
[coll]
(map-indexed (fn [i c] [i c]) coll))
That works fine. The problem comes when I try to use it in another function
(defn indexes-satisfying
"Returns a vector containing all indexes of coll that satisfy
the predicate p."
[p coll]
(defn accum-if-satisfies [acc zipped]
(let [idx (first zipped)
elem (second zipped)]
(if (p elem)
(conj acc idx)
(acc))))
(reduce accum-if-satisfies (vector) (zip-with-index coll)))
It compiles, but when I attempt to use it I get an error:
user=> (indexes-satisfying (partial > 3) [1 3 5 7])
ArityException Wrong number of args (0) passed to: PersistentVector
clojure.lang.AFn.throwArity (AFn.java:437)
I can't figure out what's going wrong here. Also if there is a more 'Clojure-like' way of doing what I'm trying to do, I'm interested in hearing about that also.
The problem is probably on the else clause of accum-if-satisfies, should be just acc not (acc).
You could use filter and then map instead of reduce. Like that:
(map #(first %)
(filter #(p (second %))
(zip-with-index coll)))
You could also call map-indexed with vector instead of (fn [i c] [i c]).
The whole code would look like that:
(defn indexes-satisfying
[p coll]
(map #(first %)
(filter #(p (second %))
(map-indexed vector coll))))
As for a more Clojure-like way, you could use
(defn indexes-satisfying [pred coll]
(filterv #(pred (nth coll %))
(range (count coll))))
Use filter instead of filterv to return a lazy seq rather than a vector.
Also, you should not use defn to define inner functions; it will instead define a global function in the namespace where the inner function is defined and have subtle side effects besides that. Use letfn instead:
(defn outer [& args]
(letfn [(inner [& inner-args] ...)]
(inner ...)))
One more way to do it would be:
(defn indexes-satisfying [p coll]
(keep-indexed #(if (p %2) % nil) coll))