Proof for NP hard or P equation below - proof

So I want to solve
The formal statement of Traveling Salesman:
Input a complete, weighted, directed graph G, and a target integer k
Output true if there is a path through G that
1) visits every vertex exactly once
2) costs <= k
With:
Input: a directed grid graph G, a set of target points S, and an integer k
Output: true if there is a path through G that visits all points in S using at most k left turns
A grid graph is a graph where the vertices are at integer coordinates from 0,0 to n,n. (So 0,0, 0,1, 0,2, ...0,n, 1,0, etc.) Also, all edges are between vertices at distance 1. (So 00->01, 00->10, but not 00 to any other vertex. Also some edges could be missing.)
Either give a polynomial-time algorithm to solve this problem, or prove this problem is NP-hard.

Overview: NP-hard defines problems that cannot be solved in polynomial time. It is quite trivial to prove that a problem is in NP - simply show that solutions are verifiable in polynomial time - however, proving a problem is NP-hard can be slightly challenging. As of now, the traveling salesman problem (TSP) is considered to be NP-hard (i.e. nobody has found a polynomial time solution).
How to prove: Proving NP-hard requires showing that every problem y in NP can be reduced to TSP in polynomial time. To do this, we typically demonstrate that there is a polynomial time transformation of the problem to SAT (Boolean Satisfiability). For this problem, we will instead show that HC (Hamiltonian Cycle) can reduce to TSP in polynomial time. Since HC is universally accepted as an NP-complete problem, showing this reduction will prove that TSP is NP-hard.
The proof:
HC Reduction: G = (V, E). Let k = |V| = n (# of nodes in G), and set all edge weights to one. Set weight of edges not originally in G to two, in order to account for our incomplete graph). Input this modified graph into the TSP described above, and ask if there is a tour on G with cost less than or equal to k.
Proof of correctness: This can be done by parts, since there are two possible solutions for each algorithm.
If HC returns True, then TSP returns True - If HC returns true, then there
exists a simple cycle with n edges (satisfies condition #1, per your question). Each edge has weight one, the overall tour has cost
n. Therefore, since k = n (satisfies condition #2), TCP will also
return true. QED.
If HC returns False, then TSP returns False - By contradiction, let's
suppose TSP returns true. HC returning false implies there
does not exist a simple cycle with n edges. Since k = n and we assume TSP returns true, that means every edge traversed has weight
one, and subsequently must be edges in the HC graph. Note that
traversing these corresponding edges in HC forms a simple cycle,
which is a contradiction. QED.

Related

How to calculate the gradient for a custom deep learning layer that takes a 1X1 neuron as input and multiplies it by a constant NXN matrix?

I want to create a custom deep learning layer that takes as input a 1X1 neuron and uses it to scale a constant, predefined NXN matrix. I do not understand how to calculate the gradient for this layer.
I understand that in this case dLdZ is NXN and dLdX should be 1X1, and I don't understand what dZdX should be to satisfy that, it's obviously not a simple chained derivative where dLdX = dLdZ*dZdX since the dimensions don't match.
The question is not really language depenedent, I write here in Matlab.
%M is the constant NXN matrix
%X is 1X1X1Xb
Z = zeros(N,N,1,b);
for i = 1:b
Z(:,:,:,i) = squeeze(X(:,:,1,i))*M;
end
==============================
edit: the answer I got was very helpful. I now perform the calculation as follows:
dLdX = zeros(1,1,1,b);
for i = 1:b
dLdX(:,:,:,i) =sum(sum(dLdZ(:,:,:,i).*M)));
end
This works perfectly. Thanks!!
I think ur question is a little unclear. I will assume ur goal is to propagate the gradients through ur above defined layer to the batch of scalar values. Let me answer according to how I understand it.
U have parameter X, which is a scalar and of dimension b (b: batch_size). This is used to scale a constant matrix Z, which is of dimension NxN. Lets assume u calculate some scalar loss L immediately from the scaled matrix Z' = Z*X, where Z' is of dimension bxNxN.
Then u can calculate the gradients in X according to:
dL/dX = dL/dZ * dZ/dX --> Note that the dimensions of this product indeed match (unlike ur initial impression) since dL/dZ' is bxNxN and dZ'/dX is bxNxN. Summing over the correct indeces yields dL/dX which is of dimension b.
Did I understand u correct?
Cheers

How to map number in a range to another in the same range with no collisions?

Effectively what I'm looking for is a function f(x) that outputs into a range that is pre-defined. Calling f(f(x)) should be valid as well. The function should be cyclical, so calling f(f(...(x))) where the number of calls is equal to the size of the range should give you the original number, and f(x) should not be time dependent and will always give the same output.
While I can see that taking a list of all possible values and shuffling it would give me something close to what I want, I'd much prefer it if I could simply plug values into the function one at a time so that I do not have to compute the entire range all at once.
I've looked into Minimal Perfect Hash Functions but haven't been able to find one that doesn't use external libraries. I'm okay with using them, but would prefer to not do so.
If an actual range is necessary to help answer my question, I don't think it would need to be bigger than [0, 2^24-1], but the starting and ending values don't matter too much.
You might want to take a look at Linear Congruential Generator. You shall be looking at full period generator (say, m=224), which means parameters shall satisfy Hull-Dobell Theorem.
Calling f(f(x)) should be valid as well.
should work
the number of calls is equal to the size of the range should give you the original number
yes, for LCG with parameters satisfying Hull-Dobell Theorem you'll get full period covered once, and 'm+1' call shall put you back at where you started.
Period of such LCG is exactly equal to m
should not be time dependent and will always give the same output
LCG is O(1) algorithm and it is 100% reproducible
LCG is reversible as well, via extended Euclid algorithm, check Reversible pseudo-random sequence generator for details
Minimal perfect hash functions are overkill, all you've asked for is a function f that is,
bijective, and
"cyclical" (ie fN=f)
For a permutation to be cyclical in that way, its order must divide N (or be N but in a way that's just a special case of dividing N). Which in turn means the LCM of the orders of the sub-cycles must divide N. One way to do that is to just have one "sub"-cycle of order N. For power of two N, it's also really easy to have lots of small cycles of some other power-of-two order. General permutations do not necessarily satisfy the cycle-requirement, of course they are bijective but the LCM of the orders of the sub-cycles may exceed N.
In the following I will leave all reduction modulo N implicit. Without loss of generality I will assume the range starts at 0 and goes up to N-1, where N is the size of the range.
The only thing I can immediately think of for general N is f(x) = x + c where gcd(c, N) == 1. The GCD condition ensures there is only one cycle, which necessarily has order N.
For power-of-two N I have more inspiration:
f(x) = cx where c is odd. Bijective because gcd(c, N) == 1 so c has a modular multiplicative inverse. Also cN=1, because φ(N)=N/2 (since N is a power of two) so cφ(N)=1 (Euler's theorem).
f(x) = x XOR c where c < N. Trivially bijective and trivially cycles with a period of 2, which divides N.
f(x) = clmul(x, c) where c is odd and clmul is carry-less multiplication. Bijective because any odd c has a carry-less multiplicative inverse. Has some power-of-two cycle length (less than N) so it divides N. I don't know why though. This is a weird one, but it has decent special cases such as x ^ (x << k). By symmetry, the "mirrored" version also works.
Eg x ^ (x >> k).
f(x) = x >>> k where >>> is bit-rotation. Obviously bijective, and fN(x) = x >>> Nk, where Nk mod N = 0 so it rotates all the way back to the unrotated position regardless of what k is.

Pollard’s p−1 algorithm: understanding of Berkeley paper

This paper explains about Pollard's p-1 factorization algorithm. I am having trouble understanding the case when factor found is equal to the input we go back and change 'a' (basically page 2 point 2 in the aforementioned paper).
Why we go back and increment 'a'?
Why we not go ahead and keep incrementing the factorial? It it because we keep going into the same cycle we have already seen?
Can I get all the factors using this same algorithm? Such as 49000 = 2^3 * 5^3 * 7^2. Currently I only get 7 and 7000. Perhaps I can use this get_factor() function recursively but I am wondering about the base cases.
def gcd(a, b):
if not b:
return a
return gcd(b, a%b)
def get_factor(input):
a = 2
for factorial in range(2, input-1):
'''we are not calculating factorial as anyway we need to find
out the gcd with n so we do mod n and we also use previously
calculate factorial'''
a = a**factorial % input
factor = gcd(a - 1, input)
if factor == 1:
continue
elif factor == input:
a += 1
elif factor > 1:
return factor
n = 10001077
p = get_factor(n)
q = n/p
print("factors of", n, "are", p, "and", q)
The linked paper is not a particularly good description of Pollard's p − 1 algorithm; most descriptions discuss smoothness bounds that make the algorithm much more practical. You might like to read this page at Prime Wiki. To answer your specific questions:
Why increment a? Because the original a doesn't work. In practice, most implementations don't bother; instead, a different factoring method, such as the elliptic curve method, is tried instead.
Why not increment the factorial? This is where the smoothness bound comes into play. Read the page at Mersenne Wiki for more details.
Can I get all factors? This question doesn't apply to the paper you linked, which assumes that the number being factored is a semi-prime with exactly two factors. The more general answer is "maybe." This is what happens at Step 3a of the linked paper, and choosing a new a may work (or may not). Or you may want to move to a different factoring algorithm.
Here is my simple version of the p − 1 algorithm, using x instead of a. The while loop computes the magical L of the linked paper (it's the least common multiple of the integers less than the smoothness bound b), which is the same calculation as the factorial of the linked paper, but done in a different way.
def pminus1(n, b, x=2):
q = 0; pgen = primegen(); p = next(pgen)
while p < b:
x = pow(x, p**ilog(p,b), n)
q, p = p, next(pgen)
g = gcd(x-1, n)
if 1 < g < n: return g
return False
You can see it in action at http://ideone.com/eMPHtQ, where it factors 10001 as in the linked paper as well as finding a rather spectacular 36-digit factor of fibonacci(522). Once you master that algorithm, you might like to move on to the two-stage version of the algorithm.

Repeated application of functions

Reading this question got me thinking: For a given function f, how can we know that a loop of this form:
while (x > 2)
x = f(x)
will stop for any value x? Is there some simple criterion?
(The fact that f(x) < x for x > 2 doesn't seem to help since the series may converge).
Specifically, can we prove this for sqrt and for log?
For these functions, a proof that ceil(f(x))<x for x > 2 would suffice. You could do one iteration -- to arrive at an integer number, and then proceed by simple induction.
For the general case, probably the best idea is to use well-founded induction to prove this property. However, as Moron pointed out in the comments, this could be impossible in the general case and the right ordering is, in many cases, quite hard to find.
Edit, in reply to Amnon's comment:
If you wanted to use well-founded induction, you would have to define another strict order, that would be well-founded. In case of the functions you mentioned this is not hard: you can take x << y if and only if ceil(x) < ceil(y), where << is a symbol for this new order. This order is of course well-founded on numbers greater then 2, and both sqrt and log are decreasing with respect to it -- so you can apply well-founded induction.
Of course, in general case such an order is much more difficult to find. This is also related, in some way, to total correctness assertions in Hoare logic, where you need to guarantee similar obligations on each loop construct.
There's a general theorem for when then sequence of iterations will converge. (A convergent sequence may not stop in a finite number of steps, but it is getting closer to a target. You can get as close to the target as you like by going far enough out in the sequence.)
The sequence x, f(x), f(f(x)), ... will converge if f is a contraction mapping. That is, there exists a positive constant k < 1 such that for all x and y, |f(x) - f(y)| <= k |x-y|.
(The fact that f(x) < x for x > 2 doesn't seem to help since the series may converge).
If we're talking about floats here, that's not true. If for all x > n f(x) is strictly less than x, it will reach n at some point (because there's only a limited number of floating point values between any two numbers).
Of course this means you need to prove that f(x) is actually less than x using floating point arithmetic (i.e. proving it is less than x mathematically does not suffice, because then f(x) = x may still be true with floats when the difference is not enough).
There is no general algorithm to determine whether a function f and a variable x will end or not in that loop. The Halting problem is reducible to that problem.
For sqrt and log, we could safely do that because we happen to know the mathematical properties of those functions. Say, sqrt approaches 1, log eventually goes negative. So the condition x < 2 has to be false at some point.
Hope that helps.
In the general case, all that can be said is that the loop will terminate when it encounters xi≤2. That doesn't mean that the sequence will converge, nor does it even mean that it is bounded below 2. It only means that the sequence contains a value that is not greater than 2.
That said, any sequence containing a subsequence that converges to a value strictly less than two will (eventually) halt. That is the case for the sequence xi+1 = sqrt(xi), since x converges to 1. In the case of yi+1 = log(yi), it will contain a value less than 2 before becoming undefined for elements of R (though it is well defined on the extended complex plane, C*, but I don't think it will, in general converge except at any stable points that may exist (i.e. where z = log(z)). Ultimately what this means is that you need to perform some upfront analysis on the sequence to better understand its behavior.
The standard test for convergence of a sequence xi to a point z is that give ε > 0, there is an n such that for all i > n, |xi - z| < ε.
As an aside, consider the Mandelbrot Set, M. The test for a particular point c in C for an element in M is whether the sequence zi+1 = zi2 + c is unbounded, which occurs whenever there is a |zi| > 2. Some elements of M may converge (such as 0), but many do not (such as -1).
Sure. For all positive numbers x, the following inequality holds:
log(x) <= x - 1
(this is a pretty basic result from real analysis; it suffices to observe that the second derivative of log is always negative for all positive x, so the function is concave down, and that x-1 is tangent to the function at x = 1). From this it follows essentially immediately that your while loop must terminate within the first ceil(x) - 2 steps -- though in actuality it terminates much, much faster than that.
A similar argument will establish your result for f(x) = sqrt(x); specifically, you can use the fact that:
sqrt(x) <= x/(2 sqrt(2)) + 1/sqrt(2)
for all positive x.
If you're asking whether this result holds for actual programs, instead of mathematically, the answer is a little bit more nuanced, but not much. Basically, many languages don't actually have hard accuracy requirements for the log function, so if your particular language implementation had an absolutely terrible math library this property might fail to hold. That said, it would need to be a really, really terrible library; this property will hold for any reasonable implementation of log.
I suggest reading this wikipedia entry which provides useful pointers. Without additional knowledge about f, nothing can be said.

Normal vector from least squares-derived plane

I have a set of points and I can derive a least squares solution in the form:
z = Ax + By + C
The coefficients I compute are correct, but how would I get the vector normal to the plane in an equation of this form? Simply using A, B and C coefficients from this equation don't seem correct as a normal vector using my test dataset.
Following on from dmckee's answer:
a x b = (a2b3 − a3b2), (a3b1 − a1b3), (a1b2 − a2b1)
In your case a1=1, a2=0 a3=A b1=0 b2=1 b3=B
so = (-A), (-B), (1)
Form the two vectors
v1 = <1 0 A>
v2 = <0 1 B>
both of which lie in the plane and take the cross-product:
N = v1 x v2 = <-A, -B, +1> (or v2 x v1 = <A, B, -1> )
It works because the cross-product of two vectors is always perpendicular to both of the inputs. So using two (non-colinear) vectors in the plane gives you a normal.
NB: You probably want a normalized normal, of course, but I'll leave that as an exercise.
A little extra color on the dmckee answer. I'd comment directly, but I do not have enough SO rep yet. ;-(
The plane z = Ax + By + C only contains the points (1, 0, A) and (0, 1, B) when C=0. So, we would be talking about the plane z = Ax + By. Which is fine, of course, since this second plane is parallel to the original one, the unique vertical translation that contains the origin. The orthogonal vector we wish to compute is invariant under translations like this, so no harm done.
Granted, dmckee's phrasing is that his specified "vectors" lie in the plane, not the points, so he's arguably covered. But it strikes me as helpful to explicitly acknowledge the implied translations.
Boy, it's been a while for me on this stuff, too.
Pedantically yours... ;-)