I have 3 CSV files which are delimited by ;
I am able to read 2 of these files with SparkSession CSV loader, but the third file causes an ArrayIndexOutOfBoundsException. When I inspect the three files manually, it looks like they all adhere to the exact same format, so I'm having trouble figuring out what causes SparkSession's CSV loader to fail. It also looks like Spark is not offering me any ways to debug its CSV loader.
Here is the code which works for 2 out of 3 files:
spark
.read
.format("csv")
.option("delimiter", ";")
.load("data/bx/BX-Users.csv")
Part of the stack trace:
Caused by: java.lang.ArrayIndexOutOfBoundsException: 62
at org.apache.spark.unsafe.types.UTF8String.numBytesForFirstByte(UTF8String.java:191)
at org.apache.spark.unsafe.types.UTF8String.numChars(UTF8String.java:206)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:253)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Part of BX-Users.csv:
"1";"nyc, new york, usa";"NULL"
"2";"stockton, california, usa";"18"
"3";"moscow, yukon territory, russia";"NULL"
"4";"porto, v.n.gaia, portugal";"17"
Related
i was trying to solve the 2009 problem from the data exposition of the Statistical
computing and Statistical graphics. The first step was about loading dataset, merging them and save them as parquet file. i am having trouble with this last step.
a.spark<-spark_read_csv(sc,"1987.csv")
b.spark<-spark_read_csv(sc,"1988.csv")
c.spark<-spark_read_csv(sc,"1989.csv")
d.spark<-spark_read_csv(sc,"1990.csv")
e.spark<-spark_read_csv(sc,"1991.csv")
f.spark<-spark_read_csv(sc,"1992.csv")
g.spark<-spark_read_csv(sc,"1993.csv")
h.spark<-spark_read_csv(sc,"1994.csv")
i.spark<-spark_read_csv(sc,"1995.csv")
j.spark<-spark_read_csv(sc,"1996.csv")
k.spark<-spark_read_csv(sc,"1997.csv")
l.spark<-spark_read_csv(sc,"1998.csv")
m.spark<-spark_read_csv(sc,"1999.csv")
n.spark<-spark_read_csv(sc,"2000.csv")
o.spark<-spark_read_csv(sc,"2001.csv")
p.spark<-spark_read_csv(sc,"2002.csv")
q.spark<-spark_read_csv(sc,"2003.csv")
r.spark<-spark_read_csv(sc,"2004.csv")
s.spark<-spark_read_csv(sc,"2005.csv")
t.spark<-spark_read_csv(sc,"2006.csv")
u.spark<-spark_read_csv(sc,"2007.csv")
v.spark<-spark_read_csv(sc,"2008.csv")
ab<-full_join(a.spark,b.spark,suffix=c("a.spark","b.spark"))
cd<-full_join(c.spark,d.spark,suffix=c("c.spark","d.spark"))
ef<-full_join(e.spark,f.spark,suffix=c("e.spark","f.spark"))
gh<-full_join(g.spark,h.spark)
ij<-full_join(i.spark,j.spark)
kl<-full_join(k.spark,l.spark)
mn<-full_join(m.spark,n.spark)
op<-full_join(o.spark,p.spark)
qr<-full_join(q.spark,r.spark)
st<-full_join(s.spark,t.spark)
uv<-full_join(u.spark,v.spark)
abcd<-full_join(ab,cd,suffix=c("ab","cd"))
efgh<-full_join(ef,gh)
ijkl<-full_join(ij,kl)
mnop<-full_join(mn,op)
qrst<-full_join(qr,st)
ah<-full_join(abcd,efgh)
ip<-full_join(ijkl,mnop)
qv<-full_join(qrst,uv)
ap<-full_join(ah,ip)
av<-full_join(ap,qv)
spark_write_parquet(av,path=("the path on the pc"),mode="overwrite")
and i get this error
Error: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:224)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:154)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:654)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:654)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:654)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:273)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:267)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:225)
at org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:547)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at sparklyr.Invoke.invoke(invoke.scala:161)
at sparklyr.StreamHandler.handleMethodCall(stream.scala:141)
at sparklyr.StreamHandler.read(stream.scala:62)
at sparklyr.BackendHandler$$anonfun$channelRead0$1.apply$mcV$sp(handler.scala:60)
at scala.util.control.Breaks.breakable(Breaks.scala:38)
at sparklyr.BackendHandler.channelRead0(handler.scala:40)
at sparklyr.BackendHandler.channelRead0(handler.scala:14)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:102)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
at io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:310)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:284)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1359)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:935)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:138)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:645)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:580)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:497)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:459)
at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:858)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:138)
at java.lang.Thread.run(Unknown Source)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 7 in stage 159.0 failed 1 times, most recent failure: Lost task 7.0 in stage 159.0 (TID 663, localhost, executor driver): org.apache.spark.memory.SparkOutOfMemoryError: error while calling spill() on org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter#1337ff33 : Spazio su disco insufficiente
at org.apache.spark.memory.TaskMemoryManager.acquireExecutionMemory(TaskMemoryManager.java:217)
at org.apache.spark.memory.TaskMemoryManager.allocatePage(TaskMemoryManager.java:283)
at org.apache.spark.memory.MemoryConsumer.allocatePage(MemoryConsumer.java:117)
at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.acquireNewPageIfNecessary(UnsafeExternalSorter.java:383)
at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.insertRecord(UnsafeExternalSorter.java:407)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.insertRow(UnsafeExternalRowSorter.java:135)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage11.sort_addToSorter$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage11.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
at org.apache.spark.sql.execution.RowIteratorFromScala.advanceNext(RowIterator.scala:83)
at org.apache.spark.sql.execution.joins.SortMergeFullOuterJoinScanner.advancedLeft(SortMergeJoinExec.scala:992)
at org.apache.spark.sql.execution.joins.SortMergeFullOuterJoinScanner.<init>(SortMergeJoinExec.scala:982)
at org.apache.spark.sql.execution.joins.SortMergeJoinExec$$anonfun$doExecute$1.apply(SortMergeJoinExec.scala:243)
at org.apache.spark.sql.execution.joins.SortMergeJoinExec$$anonfun$doExecute$1.apply(SortMergeJoinExec.scala:150)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.r
i dont know how to solve the problem. i've tried with options(java.parameters="-Xmx3072m"), but with 0 results.
I am trying to read a json stream from an MQTT broker in Apache Spark with structured streaming, read some properties of an incoming json and output them to the console. My code looks like that:
val spark = SparkSession
.builder()
.appName("BahirStructuredStreaming")
.master("local[*]")
.getOrCreate()
import spark.implicits._
val topic = "temp"
val brokerUrl = "tcp://localhost:1883"
val lines = spark.readStream
.format("org.apache.bahir.sql.streaming.mqtt.MQTTStreamSourceProvider")
.option("topic", topic).option("persistence", "memory")
.load(brokerUrl)
.toDF().withColumn("payload", $"payload".cast(StringType))
val jsonDF = lines.select(get_json_object($"payload", "$.eventDate").alias("eventDate"))
val query = jsonDF.writeStream
.format("console")
.start()
query.awaitTermination()
However, when the json arrives I get the following errors:
Exception in thread "main" org.apache.spark.sql.streaming.StreamingQueryException: Writing job aborted.
=== Streaming Query ===
Identifier: [id = 14d28475-d435-49be-a303-8e47e2f907e3, runId = b5bd28bb-b247-48a9-8a58-cb990edaf139]
Current Committed Offsets: {MQTTStreamSource[brokerUrl: tcp://localhost:1883, topic: temp clientId: paho7247541031496]: -1}
Current Available Offsets: {MQTTStreamSource[brokerUrl: tcp://localhost:1883, topic: temp clientId: paho7247541031496]: 0}
Current State: ACTIVE
Thread State: RUNNABLE
Logical Plan:
Project [get_json_object(payload#22, $.id) AS eventDate#27]
+- Project [id#10, topic#11, cast(payload#12 as string) AS payload#22, timestamp#13]
+- StreamingExecutionRelation MQTTStreamSource[brokerUrl: tcp://localhost:1883, topic: temp clientId: paho7247541031496], [id#10, topic#11, payload#12, timestamp#13]
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:300)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:189)
Caused by: org.apache.spark.SparkException: Writing job aborted.
at org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.doExecute(WriteToDataSourceV2Exec.scala:92)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan.getByteArrayRdd(SparkPlan.scala:247)
at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:296)
at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3384)
at org.apache.spark.sql.Dataset.$anonfun$collect$1(Dataset.scala:2783)
at org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:3365)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3365)
at org.apache.spark.sql.Dataset.collect(Dataset.scala:2783)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runBatch$15(MicroBatchExecution.scala:537)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runBatch$14(MicroBatchExecution.scala:533)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:351)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:349)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runBatch(MicroBatchExecution.scala:532)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$2(MicroBatchExecution.scala:198)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:351)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:349)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$1(MicroBatchExecution.scala:166)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:160)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:279)
... 1 more
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 1.0 failed 1 times, most recent failure: Lost task 0.0 in stage 1.0 (TID 8, localhost, executor driver): java.lang.ClassCastException: java.lang.String cannot be cast to org.apache.spark.unsafe.types.UTF8String
at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.getUTF8String(rows.scala:46)
at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.getUTF8String$(rows.scala:46)
at org.apache.spark.sql.catalyst.expressions.GenericInternalRow.getUTF8String(rows.scala:195)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:619)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.$anonfun$run$2(WriteToDataSourceV2Exec.scala:117)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1394)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.run(WriteToDataSourceV2Exec.scala:116)
at org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.$anonfun$doExecute$2(WriteToDataSourceV2Exec.scala:67)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:405)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:1887)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:1875)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:1874)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1874)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2108)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2057)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2046)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.doExecute(WriteToDataSourceV2Exec.scala:64)
... 34 more
Caused by: java.lang.ClassCastException: java.lang.String cannot be cast to org.apache.spark.unsafe.types.UTF8String
at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.getUTF8String(rows.scala:46)
at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.getUTF8String$(rows.scala:46)
at org.apache.spark.sql.catalyst.expressions.GenericInternalRow.getUTF8String(rows.scala:195)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:619)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.$anonfun$run$2(WriteToDataSourceV2Exec.scala:117)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1394)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.run(WriteToDataSourceV2Exec.scala:116)
at org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.$anonfun$doExecute$2(WriteToDataSourceV2Exec.scala:67)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:405)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
I am sending the JSON records using mosquitto broker and they look like this:
mosquitto_pub -m '{"eventDate": "2020-11-11T15:17:00.000+0200"}' -t "temp"
It seems that every strings coming from Bahir stream source provider raise this error. For instance the following code also raises this error :
spark.readStream
.format("org.apache.bahir.sql.streaming.mqtt.MQTTStreamSourceProvider")
.option("topic", topic).option("persistence", "memory")
.load(brokerUrl)
.select("topic")
.writeStream
.format("console")
.start()
It looks like Spark does not recognize strings coming from Bahir, maybe some kind of weird string class version issue. I've tried the following actions to make the code work:
setup java version to 8
upgrade spark version from 2.4.0 to 2.4.7
setup scala version to 2.11.12
use decode function with all possible encoding combinations instead of .cast(StringType) to transform column "payload" to String
use substring function on column "payload" to recreate a compatible String.
Finally, I got working code by recreating the string using constructor and dataset:
val lines = spark.readStream
.format("org.apache.bahir.sql.streaming.mqtt.MQTTStreamSourceProvider")
.option("topic", topic).option("persistence", "memory")
.load(brokerUrl)
.select("payload")
.as[Array[Byte]]
.map(payload => new String(payload))
.toDF("payload")
This solution is rather ugly but at least it works.
I believe that there is nothing wrong with the code provided in the question and I suspect a bug on Bahir or Spark side preventing Spark to handle String from Bahir source.
I've got a large datastore of JSON objects that I'm trying to load into Spark in a dataframe, but I'm receiving an AnalysisException when trying to do any processing on the data. There are several differently formatted JSON objects in the input data. Some of them have the same fields in different orders and/or levels of the JSON.
I've loaded the JSON in with the following code.
val messagesDF = spark.read.json("data/test")
But once I try to perform any operations on the data I receive the following stack trace:
Caused by: java.lang.reflect.InvocationTargetException: org.apache.spark.sql.AnalysisException: Reference 'SGLN' is ambiguous, could be: SGLN#1099, SGLN#1204.;
at sun.reflect.GeneratedMethodAccessor86.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:483)
at org.apache.zeppelin.spark.ZeppelinContext.showDF(ZeppelinContext.java:235)
... 48 more
Caused by: org.apache.spark.sql.AnalysisException: Reference 'SGLN' is ambiguous, could be: SGLN#1099, SGLN#1204.;
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolve(LogicalPlan.scala:264)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolve(LogicalPlan.scala:158)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolve$1.apply(LogicalPlan.scala:130)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolve$1.apply(LogicalPlan.scala:129)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
at org.apache.spark.sql.types.StructType.foreach(StructType.scala:96)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at org.apache.spark.sql.types.StructType.map(StructType.scala:96)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolve(LogicalPlan.scala:129)
at org.apache.spark.sql.execution.datasources.FileSourceStrategy$.apply(FileSourceStrategy.scala:83)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:62)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:62)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:439)
at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:92)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:77)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:74)
at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:157)
at scala.collection.AbstractIterator.foldLeft(Iterator.scala:1336)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:74)
at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:66)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:92)
at org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:84)
at org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:89)
at
org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:89)
at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2814)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2127)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2342)
... 52 more
Everything I've been able to find on this error is from joining different dataframes which is certainly similar to what I'm trying to do, but I can't go in and refactor the dataframe to provide unique ids.
My code like this:
val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)
import sqlContext.implicits._
val customers = sqlContext.read.json("jsonfilepath")
In spark-shell occur error ,I can not understand this:
17/06/19 09:59:04 ERROR bonecp.PoolWatchThread: Error in trying to obtain a connection. Retrying in 7000ms
java.sql.SQLException: A read-only user or a user in a read-only database is not permitted to disable read-only mode on a connection.
at org.apache.derby.impl.jdbc.SQLExceptionFactory.getSQLException(Unknown Source)
at org.apache.derby.impl.jdbc.Util.generateCsSQLException(Unknown Source)
at org.apache.derby.impl.jdbc.TransactionResourceImpl.wrapInSQLException(Unknown Source)
at org.apache.derby.impl.jdbc.TransactionResourceImpl.handleException(Unknown Source)
at org.apache.derby.impl.jdbc.EmbedConnection.handleException(Unknown Source)
at org.apache.derby.impl.jdbc.EmbedConnection.setReadOnly(Unknown Source)
at com.jolbox.bonecp.ConnectionHandle.setReadOnly(ConnectionHandle.java:1324)
at com.jolbox.bonecp.ConnectionHandle.<init>(ConnectionHandle.java:262)
at com.jolbox.bonecp.PoolWatchThread.fillConnections(PoolWatchThread.java:115)
at com.jolbox.bonecp.PoolWatchThread.run(PoolWatchThread.java:82)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: ERROR 25505: A read-only user or a user in a read-only database is not permitted to disable read-only mode on a connection.
at org.apache.derby.iapi.error.StandardException.newException(Unknown Source)
at org.apache.derby.iapi.error.StandardException.newException(Unknown Source)
at org.apache.derby.impl.sql.conn.GenericAuthorizer.setReadOnlyConnection(Unknown Source)
at org.apache.derby.impl.sql.conn.GenericLanguageConnectionContext.setReadOnly(Unknown Source)
... 8 more
How can I solve it?Thanks
Why are you using HiveContext to read json data?
Use SOLContext instead.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
val customers = sqlContext.read.json("jsonfilepath")
I am trying to write DataSet to Hive database by using Spark Java, but while in the process I am getting Exception.
This is my code:
Dataset<Row> data = spark.read().json(rdd).select("event.event_name");
data.write().mode("overwrite").saveAsTable("telecom.t2");
Here, rdd is the streamed json data and I can able to print the result data by following command.
data.show();
But when i try to write this result into Hive database i am not getting any exceptions but i am getting Exception in Hive command line when i try to print those values. For eg:
select * from telecom.t2;
And the exception is:
java.lang.reflect.InvocationTargetException
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.xerial.snappy.SnappyLoader.loadNativeLibrary(SnappyLoader.java:317)
at org.xerial.snappy.SnappyLoader.load(SnappyLoader.java:219)
at org.xerial.snappy.Snappy.<clinit>(Snappy.java:44)
at parquet.hadoop.codec.SnappyDecompressor.decompress(SnappyDecompressor.java:62)
at parquet.hadoop.codec.NonBlockedDecompressorStream.read(NonBlockedDecompressorStream.java:51)
at java.io.DataInputStream.readFully(DataInputStream.java:195)
at java.io.DataInputStream.readFully(DataInputStream.java:169)
at parquet.bytes.BytesInput$StreamBytesInput.toByteArray(BytesInput.java:204)
at parquet.column.values.dictionary.PlainValuesDictionary$PlainBinaryDictionary.<init>(PlainValuesDictionary.java:89)
at parquet.column.values.dictionary.PlainValuesDictionary$PlainBinaryDictionary.<init>(PlainValuesDictionary.java:72)
at parquet.column.Encoding$1.initDictionary(Encoding.java:89)
at parquet.column.Encoding$4.initDictionary(Encoding.java:148)
at parquet.column.impl.ColumnReaderImpl.<init>(ColumnReaderImpl.java:337)
at parquet.column.impl.ColumnReadStoreImpl.newMemColumnReader(ColumnReadStoreImpl.java:66)
at parquet.column.impl.ColumnReadStoreImpl.getColumnReader(ColumnReadStoreImpl.java:61)
at parquet.io.RecordReaderImplementation.<init>(RecordReaderImplementation.java:270)
at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:134)
at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:99)
at parquet.filter2.compat.FilterCompat$NoOpFilter.accept(FilterCompat.java:154)
at parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:99)
at parquet.hadoop.InternalParquetRecordReader.checkRead(InternalParquetRecordReader.java:137)
at parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:208)
at parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:201)
at org.apache.hadoop.hive.ql.io.parquet.read.ParquetRecordReaderWrapper.<init>(ParquetRecordReaderWrapper.java:122)
at org.apache.hadoop.hive.ql.io.parquet.read.ParquetRecordReaderWrapper.<init>(ParquetRecordReaderWrapper.java:85)
at org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat.getRecordReader(MapredParquetInputFormat.java:72)
at org.apache.hadoop.hive.ql.exec.FetchOperator$FetchInputFormatSplit.getRecordReader(FetchOperator.java:673)
at org.apache.hadoop.hive.ql.exec.FetchOperator.getRecordReader(FetchOperator.java:323)
at org.apache.hadoop.hive.ql.exec.FetchOperator.getNextRow(FetchOperator.java:445)
at org.apache.hadoop.hive.ql.exec.FetchOperator.pushRow(FetchOperator.java:414)
at org.apache.hadoop.hive.ql.exec.FetchTask.fetch(FetchTask.java:140)
at org.apache.hadoop.hive.ql.Driver.getResults(Driver.java:1670)
at org.apache.hadoop.hive.cli.CliDriver.processLocalCmd(CliDriver.java:233)
at org.apache.hadoop.hive.cli.CliDriver.processCmd(CliDriver.java:165)
at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:376)
at org.apache.hadoop.hive.cli.CliDriver.executeDriver(CliDriver.java:736)
at org.apache.hadoop.hive.cli.CliDriver.run(CliDriver.java:681)
at org.apache.hadoop.hive.cli.CliDriver.main(CliDriver.java:621)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.hadoop.util.RunJar.run(RunJar.java:221)
at org.apache.hadoop.util.RunJar.main(RunJar.java:136)
Caused by: java.lang.UnsatisfiedLinkError: no snappyjava in java.library.path
at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1867)
at java.lang.Runtime.loadLibrary0(Runtime.java:870)
at java.lang.System.loadLibrary(System.java:1122)
at org.xerial.snappy.SnappyNativeLoader.loadLibrary(SnappyNativeLoader.java:52)
... 48 more
Exception in thread "main" org.xerial.snappy.SnappyError: [FAILED_TO_LOAD_NATIVE_LIBRARY] null
at org.xerial.snappy.SnappyLoader.load(SnappyLoader.java:229)
at org.xerial.snappy.Snappy.<clinit>(Snappy.java:44)
at parquet.hadoop.codec.SnappyDecompressor.decompress(SnappyDecompressor.java:62)
at parquet.hadoop.codec.NonBlockedDecompressorStream.read(NonBlockedDecompressorStream.java:51)
at java.io.DataInputStream.readFully(DataInputStream.java:195)
at java.io.DataInputStream.readFully(DataInputStream.java:169)
at parquet.bytes.BytesInput$StreamBytesInput.toByteArray(BytesInput.java:204)
at parquet.column.values.dictionary.PlainValuesDictionary$PlainBinaryDictionary.<init>(PlainValuesDictionary.java:89)
at parquet.column.values.dictionary.PlainValuesDictionary$PlainBinaryDictionary.<init>(PlainValuesDictionary.java:72)
at parquet.column.Encoding$1.initDictionary(Encoding.java:89)
at parquet.column.Encoding$4.initDictionary(Encoding.java:148)
at parquet.column.impl.ColumnReaderImpl.<init>(ColumnReaderImpl.java:337)
at parquet.column.impl.ColumnReadStoreImpl.newMemColumnReader(ColumnReadStoreImpl.java:66)
at parquet.column.impl.ColumnReadStoreImpl.getColumnReader(ColumnReadStoreImpl.java:61)
at parquet.io.RecordReaderImplementation.<init>(RecordReaderImplementation.java:270)
at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:134)
at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:99)
at parquet.filter2.compat.FilterCompat$NoOpFilter.accept(FilterCompat.java:154)
at parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:99)
at parquet.hadoop.InternalParquetRecordReader.checkRead(InternalParquetRecordReader.java:137)
at parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:208)
at parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:201)
at org.apache.hadoop.hive.ql.io.parquet.read.ParquetRecordReaderWrapper.<init>(ParquetRecordReaderWrapper.java:122)
at org.apache.hadoop.hive.ql.io.parquet.read.ParquetRecordReaderWrapper.<init>(ParquetRecordReaderWrapper.java:85)
at org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat.getRecordReader(MapredParquetInputFormat.java:72)
at org.apache.hadoop.hive.ql.exec.FetchOperator$FetchInputFormatSplit.getRecordReader(FetchOperator.java:673)
at org.apache.hadoop.hive.ql.exec.FetchOperator.getRecordReader(FetchOperator.java:323)
at org.apache.hadoop.hive.ql.exec.FetchOperator.getNextRow(FetchOperator.java:445)
at org.apache.hadoop.hive.ql.exec.FetchOperator.pushRow(FetchOperator.java:414)
at org.apache.hadoop.hive.ql.exec.FetchTask.fetch(FetchTask.java:140)
at org.apache.hadoop.hive.ql.Driver.getResults(Driver.java:1670)
at org.apache.hadoop.hive.cli.CliDriver.processLocalCmd(CliDriver.java:233)
at org.apache.hadoop.hive.cli.CliDriver.processCmd(CliDriver.java:165)
at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:376)
at org.apache.hadoop.hive.cli.CliDriver.executeDriver(CliDriver.java:736)
at org.apache.hadoop.hive.cli.CliDriver.run(CliDriver.java:681)
at org.apache.hadoop.hive.cli.CliDriver.main(CliDriver.java:621)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.hadoop.util.RunJar.run(RunJar.java:221)
at org.apache.hadoop.util.RunJar.main(RunJar.java:136)
2 Jan, 2017 12:02:40 PM WARNING: parquet.hadoop.ParquetRecordReader: Can not initialize counter due to context is not a instance of TaskInputOutputContext, but is org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
2 Jan, 2017 12:02:40 PM INFO: parquet.hadoop.InternalParquetRecordReader: RecordReader initialized will read a total of 12 records.
2 Jan, 2017 12:02:40 PM INFO: parquet.hadoop.InternalParquetRecordReader: at row 0. reading next block
2 Jan, 2017 12:02:40 PM INFO: parquet.hadoop.InternalParquetRecordReader: block read in memory in 29 ms. row count = 12
Spark saves data in parquet.snappy format by default when you call saveAsTable and it seems you don't have snappy in hive library path. Changing writer format (for example to json) will not work because Hive expects sequence files in table created using this option.
But you can change compression algorithm before saving data as table:
spark.conf.set("spark.sql.parquet.compression.codec", "gzip")
Gzip compression should be available on Hive by default, in case of any problems you can still save data without compression:
spark.conf.set("spark.sql.parquet.compression.codec", "uncompressed")
This error
org.xerial.snappy.SnappyError: [FAILED_TO_LOAD_NATIVE_LIBRARY] null
is related to snappy issue https://github.com/xerial/snappy-java/issues/6
In last comment of this issue, there is a workaround:
unzip snappy-java-1.0.4.1.jar
cd org/xerial/snappy/native/Mac/x86_64/
cp libsnappyjava.jnilib libsnappyjava.dylib
cd ../../../../../..
cp snappy-java-1.0.4.1.jar snappy-java-1.0.4.1.jar.old
jar cf snappy-java-1.0.4.1.jar org