How to get the variance of a regression prediction in xgboost? - regression

I want to know how well a prediction is by looking at the variance. Does xgboost provide a variance output for regression?

I am not sure if you can estimate the variance directly, but you could try to use Quantile Regression to estimate the IQR, which is related with the variance. Then, instead of estimating the mean of the predicted variable, you could estimate the 75th and the 25th percentiles, and find IQR = p_75 - p_25.
This link gives an implementation in python of Quantile Regression for XGBoost, which basically boils down to using a check function as the cost function, instead of the usual mean squared error.

Related

How to implement soft-argmax in caffe?

In Caffe deep-learning framework there is an argmax layer which is not differentiable and hence can not be used for end to end training of a CNN.
Can anyone tell me how I could implement the soft version of argmax which is soft-argmax?
I want to regress coordinates from heatmap and then use those coordinates in loss calculations. I am very new to this framework therefore no idea how to do this. any help will be much appreciated.
I don't get exactly what you want, but there are following options:
Use L2 loss to train regression task (EuclideanLoss). Or SmoothL1Loss (from SSD Caffe by Wei Lui), or L1 (don't know were you get it).
Use softmax with cross-entropy loss (SoftmaxWithLoss) to train classification task with classes corresponding to the possible values of x or y coordinate. For example, one loss layer for x, and one for y. SoftmaxWithLoss accepts label as a numeric value, and casts it to int with static_cast(). But take into account that implementation doesn't check that the casted value is within 0..(num_classes-1) range, so you have to be careful.
If you want something more unusual, you'll have to write you own layer in C++, C++/CUDA or Python+NumPy. This is very often the case unless you are already using someone other's implementation.

Obtaining multiple output in regression using deep learning

Given an RGB image of hand and 3d position of the keypoints of the hand as dataset, I want to do this as regression problem in DL. In this case input will be the RGB image, and output should be estimated 3d position of keypoints.
I have seen some info about regression but most of them are trying to estimate one single value. Is it possible to estimate multiple values(or output) all at once?
For now I have referred to this code. This guy is trying to estimate the age of a person in the image.
The output vector from a neural net can represent anything as long as you define loss function well. Say you want to detect (x,y,z) co-ordinates of 10 keypoints, then just have 30 element long output vector say (x1,y1,z1,x2,y2,z2..............,x10,y10,z10), where xi,yi,zi denote coordinates of ith keypoint, basically you can use any order you feel convenient with. Just be careful with your loss function. Say you want to calculate RMSE loss, you would have to extract tripes correctly and then calculate RMSE loss for each keypoint, or if you are fimiliar with linear algebra, just reshape it into a 3x10 matrix correctly and and have your results also as a 3x10 matrix and then just use
loss = tf.sqrt(tf.reduce_mean(tf.squared_difference(Y1, Y2)))
But once you have formulated your net you will have to stick to it.

Tensorflow Multiple Input Loss Function

I am trying to implement a CNN in Tensorflow (quite similar architecture to VGG), which then splits into two branches after the first fully connected layer. It follows this paper: https://arxiv.org/abs/1612.01697
Each of the two branches of the network outputs a set of 32 numbers. I want to write a joint loss function, which will take 3 inputs:
The predictions of branch 1 (y)
The predictions of branch 2 (alpha)
The labels Y (ground truth) (q)
and calculate a weighted loss, as in the image below:
Loss function definition
q_hat = tf.divide(tf.reduce_sum(tf.multiply(alpha, y),0), tf.reduce_sum(alpha,0))
loss = tf.abs(tf.subtract(q_hat, q))
I understand the fact that I need to use the tf functions in order to implement this loss function. Having implemented the above function, the network is training, but once trained, it is not outputting the expected results.
Has anyone ever tried combining outputs of two branches of a network in one joint loss function? Is this something TensorFlow supports? Maybe I am making a mistake somewhere here? Any help whatsoever would be greatly appreciated. Let me know if you would like me to add any further details.
From TensorFlow perspective, there is absolutely no difference between a "regular" CNN graph and a "branched" graph. For TensorFlow, it is just a graph that needs to be executed. So, TensorFlow certainly supports this. "Combining two branches into joint loss" is also nothing special. In fact, it is "good" that loss depends on both branches. It means that when you ask TensorFlow to compute loss, it will have to do the forward pass through both branches, which is what you want.
One thing I noticed is that your code for loss is different than the image. Your code appears to do this https://ibb.co/kbEH95

lmer Get p values from anova

lmerTest was designed as a wrapper to permit estimation of p-values from lmer mixed model analyses, using the Satterthwaite estimate of denominator degrees of freedom (ddf). But lmerTest now appears to be broken. It presently returns a message that there was an internal calculation error and returns only the lmer result (with no p-values). I have been able to calculate the p-values from the summary() function, using Dan Mirman's excellent code for calculating the Kenward-Rogers estimate of ddf. But I can't find equivalent code to calculate the p-values in an anova call on the lmer model. I suspect that one just needs to feed anova() a ddf, but I can't figure out how to do that.
Thanks in advance to anyone that can suggest solutions for this problem.
Larry Hunsicker
lmerTest returns the anova output of lme4 package whenever some computational error occurs in getting the Satterthwaite's approximation (such as e.g. in calculating the asymptotic variance covariance matrix). The lmerTest is not broken, it is just that there could be examples when the Satterthwaite's approximation cannot be calculated. In my experience this occurs not often.

Loss function for ordinal target on SoftMax over Logistic Regression

I am using Pylearn2 OR Caffe to build a deep network. My target is ordered nominal. I am trying to find a proper loss function but cannot find any in Pylearn2 or Caffe.
I read a paper "Loss Functions for Preference Levels: Regression with Discrete Ordered Labels" . I get the general idea - but I am not sure I understand what will the thresholds be, if my final layer is a SoftMax over Logistic Regression (outputting probabilities).
Can some help me by pointing to any implementation of such a loss function ?
Thanks
Regards
For both pylearn2 and caffe, your labels will need to be 0-4 instead of 1-5...it's just the way they work. The output layer will be 5 units, each is a essentially a logistic unit...and the softmax can be thought of as an adaptor that normalizes the final outputs. But "softmax" is commonly used as an output type. When training, the value of any individual unit is rarely ever exactly 0.0 or 1.0...it's always a distribution across your units - which log-loss can be calculated on. This loss is used to compare against the "perfect" case and the error is back-propped to update your network weights. Note that a raw output from PL2 or Caffe is not a specific digit 0,1,2,3, or 5...it's 5 number, each associated to the likelihood of each of the 5 classes. When classifying, one just takes the class with the highest value as the 'winner'.
I'll try to give an example...
say I have a 3 class problem, I train a network with a 3 unit softmax.
the first unit represents the first class, second the second and third, third.
Say I feed a test case through and get...
0.25, 0.5, 0.25 ...0.5 is the highest, so a classifier would say "2". this is the softmax output...it makes sure the sum of the output units is one.
You should have a look at ordinal (logistic) regression. This is the formal solution to the problem setup you describe ( do not use plain regression as the distance measures of errors are wrong).
https://stats.stackexchange.com/questions/140061/how-to-set-up-neural-network-to-output-ordinal-data
In particular I recommend looking at Coral ordinal regression implementation at
https://github.com/ck37/coral-ordinal/issues.