Finding anomaly detection by pattern matching in a set of continous data - deep-learning

I have series of sensors (around 4k) and each sensor will measure the amplitudes at each point.Suppose I train the neural network with sufficent set of 4k values (N * 4k shape). The machine will find a pattern in the series of values.If the values stray away from the pattern (that is anomaly) it can detect the point and will be able to say that anomaly is in the 'X'th sensor.Is this possible.If so what kind of neural network should I use?

Since you are having a time series inputs you can use sequential models like RNN, LSTM, GRU. And use softmax layer at the end, which can output (normal/anomaly).
you can use the same model(weights) 4k times to find which sensor is at fault.
Or same sequential network can be trained with multi dimensional softmax (anomaly1/normal1 ... fault4k/ normal4k)
But such networks won't work well when data is imbalanced(anomalies are rare).
you can also try RPCA for anomaly detection.

Related

How can you increase the accuracy of ResNet50?

I'm using Resnet50 model to classify images into two classes: normal cells and cancer cells.
so I want to to increase the accuracy but i don't know what to modify.
# we are using resnet50 for transfer learnin here. So we have imported it
from tensorflow.keras.applications import resnet50
# initializing model with weights='imagenet'i.e. we are carring its original weights
model_name='resnet50'
base_model=resnet50.ResNet50(include_top=False, weights="imagenet",input_shape=img_shape, pooling='max')
last_layer=base_model.output # we are taking last layer of the model
# Add flatten layer: we are extending Neural Network by adding flattn layer
flatten=layers.Flatten()(last_layer)
# Add dense layer
dense1=layers.Dense(100,activation='relu')(flatten)
# Add dense layer to the final output layer
output_layer=layers.Dense(class_count,activation='softmax')(flatten)
# Creating modle with input and output layer
model=Model(inputs=base_model.inputs,outputs=output_layer)
model.compile(Adamax(learning_rate=.001), loss='categorical_crossentropy', metrics=['accuracy'])
There were 48 errors in 534 test cases Model accuracy= 91.01 %
Also what do you think about the results of the graph?
this is the classification report
i got good results but is there a possibility to increase accuracy more than that?
This is a broad question as there are many ways one can attempt to generally improve the network's accuracy. some of which may be
Increase the dimension of the layers that are learned in transfer learning (make sure not to overfit)
Use transfer learning with Convolution layers and not MLP
let the optimization algorithm choose the learning rate on its own
Play with additional augmentations to the dataset
and the list goes on.
Also, if possible, I would suggest comparing your results to other publicly available benchmarks - by doing so you might understand the upper bounds of the accuracies better

Why filters are trained differently based on the same image in CNN Deep Learning?

I'm a beginner in CNN DeepLearning, I know the basic concept that we use some filters to generate a set of feature maps from an image, we activate it using non-linear method like 'relu' before we downsample it. We keep doing this until the image becomes very small. Then we flatten it and use a fully connected network to calculate its category. And we use the back-propergation technique to calculate all parameters in the map. One thing I don't understand is that when we do Conv2D we create many filters(channels) from an image. Like in the sample code:
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))
I understand this is to generate as many features as possible. But how these filters are trained to detect different features from one image? If all of them are initialized with the same value (like 0) then they should end up with detecting the same feature, right? Are we giving them random values during initialization so that they can find their local minimum loss using gradient descent?
If you initialize all filters with the same value, then you are right, they will learn the same thing. That's why we never initialize with same value. We initialize each kernel with random values (usually 0 mean and some small variance).
There are many methods to find out a good initialization for your network. One of the most famous and used ones is Xavier initialization.
Adding to what being discussed, the weights in the CONV layer also learns the same way weights learn in FC layer, through backpropagation, using some optimization algorithm (GD, Adam, RMSprop etc). Ending up in local optimum is very unlikely in big networks as a point being local optimum for all the weights is very unlikely as no of weights increases. If weights are initialized with zeros, the gradients become the same for the update and hidden units become the same in a layer. Hence they learn the same features. Hence we use random initialization with mean 0 and variance inversely proportional to the number of units in the previous layer. (eg Xavier)

Predicting continuous valued output

I am working on predicting Semantic Textual Similarity (SemEval 2017 Task-1) between a pair of texts. The similarity score (output) is a continuous value between [0,5]. The neural network model (link below), therefore, has 6 units in the final layer for prediction between values [0,5]. The objective function used is the Pearson correlation coefficient and softmax activation is used. Now, in order to train the model, how can I give the target output values to the model? Since there are 6 output classes, I should probably send one-hot-encoded vectors of the output. In that case, how can we convert the output (which might be a float value such as 2.33) to a one-hot vector of length 6? Or is there any other way of specifying the target output and training the model?
Paper: http://nlp.arizona.edu/SemEval-2017/pdf/SemEval016.pdf
If the value you're trying to predict is continuously-defined, you might be better off configuring this as a regression architecture. This will be simpler to train and interpret and will give you non-integer predictions (which you can then bucket or threshold however you please).
In order to do this, replace your softmax layer with a layer containing a single neuron with a linear activation function. Then you can simply train this network using your real-valued similarity numbers at the output. For loss function, you can use MSE / L2 unless you have a reason to do otherwise.

How can we define an RNN - LSTM neural network with multiple output for the input at time "t"?

I am trying to construct a RNN to predict the possibility of a player playing the match along with the runs score and wickets taken by the player.I would use a LSTM so that performance in current match would influence player's future selection.
Architecture summary:
Input features: Match details - Venue, teams involved, team batting first
Input samples: Player roster of both teams.
Output:
Discrete: Binary: Did the player play.
Discrete: Wickets taken.
Continous: Runs scored.
Continous: Balls bowled.
Question:
Most often RNN uses "Softmax" or"MSE" in the final layers to process "a" from LSTM -providing only a single variable "Y" as output. But here there are four dependant variables( 2 Discrete and 2 Continuous). Is it possible to stitch together all four as output variables?
If yes, how do we handle mix of continuous and discrete outputs with loss function?
(Though the output from LSTM "a" has multiple features and carries the information to the next time-slot, we need multiple features at output for training based on the ground-truth)
You just do it. Without more detail on the software (if any) in use it is hard to give more detasmail
The output of the LSTM unit is at every times step on of the hidden layers of your network
You can then input it in to 4 output layers.
1 sigmoid
2 i'ld messarfound wuth this abit. Maybe 4x sigmoid(4 wickets to an innnings right?) Or relu4
3,4 linear (squarijng it is as lso an option,e or relu)
For training purposes your loss function is the sum of your 4 individual losses.
Since f they were all MSE you could concatenat your 4 outputs before calculating the loss.
But sincd the first is cross-entropy (for a decision sigmoid) yould calculate seperately and sum.
You can still concatenate them after to have a output vector

Hard to understand Caffe MNIST example

After going through the Caffe tutorial here: http://caffe.berkeleyvision.org/gathered/examples/mnist.html
I am really confused about the different (and efficient) model using in this tutorial, which is defined here: https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_train_test.prototxt
As I understand, Convolutional layer in Caffe simply calculate the sum of Wx+b for each input, without applying any activation function. If we would like to add the activation function, we should add another layer immediately below that convolutional layer, like Sigmoid, Tanh, or Relu layer. Any paper/tutorial I read on the internet applies the activation function to the neuron units.
It leaves me a big question mark as we only can see the Convolutional layers and Pooling layers interleaving in the model. I hope someone can give me an explanation.
As a site note, another doubt for me is the max_iter in this solver:
https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_solver.prototxt
We have 60.000 images for training, 10.000 images for testing. So why does the max_iter here only 10.000 (and it still can get > 99% accuracy rate)? What does Caffe do in each iteration?
Actually, I'm not so sure if the accuracy rate is the total correct prediction/test size.
I'm very amazed of this example, as I haven't found any example, framework that can achieve this high accuracy rate in that very short time (only 5 mins to get >99% accuracy rate). Hence, I doubt there should be something I misunderstood.
Thanks.
Caffe uses batch processing. The max_iter is 10,000 because the batch_size is 64. No of epochs = (batch_size x max_iter)/No of train samples. So the number of epochs is nearly 10. The accuracy is calculated on the test data. And yes, the accuracy of the model is indeed >99% as the dataset is not very complicated.
For your question about the missing activation layers, you are correct. The model in the tutorial is missing activation layers. This seems to be an oversight of the tutorial. For the real LeNet-5 model, there should be activation functions following the convolution layers. For MNIST, the model still works surprisingly well without the additional activation layers.
For reference, in Le Cun's 2001 paper, it states:
As in classical neural networks, units in layers up to F6 compute a dot product between their input vector and their weight vector, to which a bias is added. This weighted sum, denoted a_i, for unit i, is then passed through a sigmoid squashing function to produce the state of unit i ...
F6 is the "blob" between the two fully connected layers. Hence the first fully connected layers should have an activation function applied (the tutorial uses ReLU activation functions instead of sigmoid).
MNIST is the hello world example for neural networks. It is very simple to today's standard. A single fully connected layer can solve the problem with accuracy of about 92%. Lenet-5 is a big improvement over this example.