Calculate accumulated times from json with bash script - json

I have data in json format that logs timestamps (hh:mm in 24h format) with an event (In/Out). My goal is to add up all the time differences between an "IN" event and the next "OUT" event.
For simplification I assume that there are no inconsistencies (The first element is always an "IN" and each "IN" is followed by an "OUT"). Exception: If the last element is an "IN", the calculation has to be done between the current time and the timestamp from the last "IN" event.
This is my script so far, which calculates all the timespans, also between an OUT and an IN event. But I need only those that are inbetween an IN and OUT event.
Any tips what might be more useful here are welcome !
#!/bin/bash
JSON='{ "times": [ [ "7:43", "IN" ], [ "8:26", "OUT" ], [ "8:27", "IN" ], [ "9:12", "OUT" ], [ "9:14", "IN" ], [ "9:22", "OUT" ], [ "9:23", "IN " ], [ "12:12", "OUT" ], [ "13:12", "IN" ] ]}'
IN_TIMES=$(jq '.times | to_entries | .[] | select(.value[1]| tostring | contains("IN")) | .value[0]' <<< "$JSON")
OUT_TIMES=$(jq '.times | to_entries | .[] | select(.value[1]| tostring | contains("OUT")) | .value[0]' <<< "$JSON")
ALL_TIMES=$(jq -r '.times| to_entries | .[] | .value[0]' <<< "$JSON")
prevtime=0
count=0
for i in $(echo $ALL_TIMES | sed "s/ / /g")
do
if [[ "$count" -eq 0 ]]; then
(( count++ ))
prevtime=$i
continue
else
(( count++ ))
fi
time1=`date +%s -d ${prevtime}`
time2=`date +%s -d ${i}`
diffsec=`expr ${time2} - ${time1}`
echo From $prevtime to $i: `date +%H:%M -ud #${diffsec}`
prevtime=$i
done

Here's an only-jq solution that only calls jq once.
Please note, though, that it may need tweaking to take into account time zone considerations, error-handling, and potentially other complications:
def mins: split(":") | map(tonumber) | .[0] * 60 + .[1];
def diff: (.[1] - .[0]) | if . >= 0 then . else 24*60 + . end;
def now_mins: now | gmtime | .[3] * 60 + .[4];
def pairs:
range(0; length; 2) as $i | [.[$i], .[$i+1] ];
def sigma(s): reduce s as $s (0; . + $s);
.times
| map( .[0] |= mins )
| if .[-1][1] == "IN" then . + [ [now_mins, "OUT"] ] else . end
| sigma(pairs | map(.[0]) | diff)

Since you measure times up to the minute, it is enough to compute minutes without messing up with the command date. I have an awk solution:
awk -F: -vIRS=" " -vfmt="From %5s to %5s: %4u minutes\n" \
'{this=$1*60+$2}a{printf(fmt,at,$0,this-a);a=0;next}{a=this;at=$0}\
END{if(a){$0=strftime("%H:%M");printf(fmt,at,$0,$1*60+$2-a)}}' <<<"$ALL_TIMES"
which works by defining a colon as field separator and a space as record separator. In this way we get a separate record with two fields for each time. Then
{this=$1*60+$2} : We compute how many minutes there are in the current record and put them in the variable this.
a{printf(fmt,at,$0,this-a);a=0;next} : If the (initially empty) variable a is not null nor zero, we are reading an OUT entry, so we print what we want, set a to zero because the next field will be an IN entry, and we continue to the next record.
{a=this;at=$0} : Otherwise, we are reading an IN entry, and set a to its minutes and at to its string representation (needed we will print it, as per previous case).
END{if(a){$0=strftime("%H:%M");printf(fmt,at,$0,$1*60+$2-a)}} : at the end, if we still have some dangling IN data, we set $0 to be the properly formatted current time and print what we want.
All done.

With Xidel and a little XQuery magic this is rather simple:
#!/bin/bash
JSON='{"times": [["7:43", "IN"], ["8:26", "OUT"], ["8:27", "IN"], ["9:12", "OUT"], ["9:14", "IN"], ["9:22", "OUT"], ["9:23", "IN "], ["12:12", "OUT"], ["13:12", "IN"]]}'
xidel -s - --xquery '
let $in:=$json/(times)()[contains(.,"IN")](1) ! time(
substring(
"00:00:00",
1,
8-string-length(.)
)||.
),
$out:=$json/(times)()[contains(.,"OUT")](1) ! time(
substring(
"00:00:00",
1,
8-string-length(.)
)||.
)
for $x at $i in $out return
concat(
"From ",
$in[$i],
" to ",
$x,
": ",
$x - $in[$i] + time("00:00:00")
)
' <<< "$JSON"
$in:
00:07:43
00:08:27
00:09:14
00:09:23
00:13:12
$out:
00:08:26
00:09:12
00:09:22
00:12:12
Output:
From 00:07:43 to 00:08:26: 00:00:43
From 00:08:27 to 00:09:12: 00:00:45
From 00:09:14 to 00:09:22: 00:00:08
From 00:09:23 to 00:12:12: 00:02:49

Related

Bash script with jq wont get date difference from strings, and runs quite slowly on i7 16GB RAM

Need to find the difference between TradeCloseTime and TradeOpenTime time in dd:hh:mm format for the Exposure column in the following script.
Also the script runs super slow (~4 mins for 800 rows of json, on Core i7 16gb RAM machine)
#!/bin/bash
echo "TradeNo, TradeOpenType, TradeCloseType, TradeOpenSource, TradeCloseSource, TradeOpenTime, TradeCloseTime, PNL, Exposure" > tradelist.csv
tradecount=$(jq -r '.performance.numberOfTrades|tonumber' D.json)
for ((i=0; i<$tradecount; i++))
do
tradeNo=$(jq -r '.trades['$i']|[.tradeNo][]|tonumber' D.json)
entrySide=$(jq -r '.trades['$i'].orders[0]|[.side][]' D.json)
exitSide=$(jq -r '.trades['$i'].orders[1]|[.side][]' D.json)
entrySource=$(jq -r '.trades['$i'].orders[0]|[.source][]' D.json)
exitSource=$(jq -r '.trades['$i'].orders[1]|[.source][]' D.json)
tradeEntryTime=$(jq -r '.trades['$i'].orders[0]|[.placedTime][]' D.json | tr -d 'Z' | tr -s 'T' ' ')
tradeExitTime=$(jq -r '.trades['$i'].orders[1]|[.placedTime][]' D.json | tr -d 'Z' | tr -s 'T' ' ')
profitPercentage=$(jq -r '(.trades['$i']|[.profitPercentage][0]|tonumber)*(100)' D.json)
echo $tradeNo","$entrySide","$exitSide","$entrySource","$exitSource","$tradeEntryTime","$tradeExitTime","$profitPercentage | tr -d '"' >> tradelist.csv
done
json file looks like this
{"market":{"exchange":"BINANCE_FUTURES","coinPair":"BTC_USDT"},"strategy":{"name":"","type":"BACKTEST","candleSize":15,"lookbackDays":6,"leverageLong":1.00000000,"leverageShort":1.00000000,"strategyName":"ABC","strategyVersion":35,"runNo":"002","source":"Personal"},"strategyParameters":[{"name":"DurationInput","value":"87.0"}],"openPositionStrategy":{"actionTime":"CANDLE_CLOSE","maxPerSignal":1.00000000},"closePositionStrategy":{"actionTime":"CANDLE_CLOSE","minProfit":"NaN","stopLossValue":0.07000000,"stopLossTrailing":true,"takeProfit":0.01290000,"takeProfitDeviation":"NaN"},"performance":{"startTime":"2019-01-01T00:00:00Z","endTime":"2021-11-24T00:00:00Z","startAllocation":1000.00000000,"endAllocation":3478.58904150,"absoluteProfit":2478.58904150,"profitPerc":2.47858904,"buyHoldRatio":0.62426630,"buyHoldReturn":4.57228387,"numberOfTrades":744,"profitableTrades":0.67833109,"maxDrawdown":-0.20924885,"avgMonthlyProfit":0.05242718,"profitableMonths":0.70370370,"avgWinMonth":0.09889897,"avgLoseMonth":-0.05275563,"startPrice":null,"endPrice":57623.08000000},"trades":[{"tradeNo":0,"profit":-5.48836165,"profitPercentage":-0.00549085,"accumulatedBalance":994.51163835,"compoundProfitPerc":-0.00548836,"orders":[{"side":"Long","placedTime":"2019-09-16T21:15:00Z","placedAmount":0.09700000,"filledTime":"2019-09-16T21:15:00Z","filledAmount":0.09700000,"filledPrice":10300.49000000,"commissionPaid":0.39965901,"source":"SIGNAL"},{"side":"CloseLong","placedTime":"2019-09-17T19:15:00Z","placedAmount":0.09700000,"filledTime":"2019-09-17T19:15:00Z","filledAmount":0.09700000,"filledPrice":10252.13000000,"commissionPaid":0.39778264,"source":"SIGNAL"}]},{"tradeNo":1,"profit":-3.52735800,"profitPercentage":-0.00356403,"accumulatedBalance":990.98428035,"compoundProfitPerc":-0.00901572,"orders":[{"side":"Long","placedTime":"2019-09-19T06:00:00Z","placedAmount":0.10000000,"filledTime":"2019-09-19T06:00:00Z","filledAmount":0.10000000,"filledPrice":9893.16000000,"commissionPaid":0.39572640,"source":"SIGNAL"},{"side":"CloseLong","placedTime":"2019-09-19T06:15:00Z","placedAmount":0.10000000,"filledTime":"2019-09-19T06:15:00Z","filledAmount":0.10000000,"filledPrice":9865.79000000,"commissionPaid":0.39463160,"source":"SIGNAL"}]},{"tradeNo":2,"profit":-5.04965308,"profitPercentage":-0.00511770,"accumulatedBalance":985.93462727,"compoundProfitPerc":-0.01406537,"orders":[{"side":"Long","placedTime":"2019-09-25T10:15:00Z","placedAmount":0.11700000,"filledTime":"2019-09-25T10:15:00Z","filledAmount":0.11700000,"filledPrice":8430.00000000,"commissionPaid":0.39452400,"source":"SIGNAL"},{"side":"CloseLong","placedTime":"2019-09-25T10:30:00Z","placedAmount":0.11700000,"filledTime":"2019-09-25T10:30:00Z","filledAmount":0.11700000,"filledPrice":8393.57000000,"commissionPaid":0.39281908,"source":"SIGNAL"}]}
You can do it all (extracts, conversions and formatting) with one jq call:
#!/bin/sh
echo 'TradeNo,TradeOpenType,TradeCloseType,TradeOpenSource,TradeCloseSource,TradeOpenTime,TradeCloseTime,PNL,Exposure'
query='
.trades[]
| [
.tradeNo,
.orders[0].side,
.orders[1].side,
.orders[0].source,
.orders[1].source,
(.orders[0].placedTime | fromdate | strftime("%Y-%m-%d %H:%M:%S")),
(.orders[1].placedTime | fromdate | strftime("%Y-%m-%d %H:%M:%S")),
.profitPercentage * 100,
(
(.orders[1].placedTime | fromdate) - (.orders[0].placedTime | fromdate)
| (. / 86400 | floor | tostring) + (. % 86400 | strftime(":%H:%M"))
)
]
|#csv
'
jq -r "$query" < D.json > tradelist.csv
example of JSON (cleaned of all irrelevant keys):
{
"trades": [
{
"tradeNo": 0,
"profitPercentage": -0.00549085,
"orders": [
{
"side": "Long",
"placedTime": "2018-12-16T21:34:46Z",
"source": "SIGNAL"
},
{
"side": "CloseLong",
"placedTime": "2019-09-17T19:15:00Z",
"source": "SIGNAL"
}
]
}
]
}
output:
TradeNo,TradeOpenType,TradeCloseType,TradeOpenSource,TradeCloseSource,TradeOpenTime,TradeCloseTime,PNL,Exposure
0,"Long","CloseLong","SIGNAL","SIGNAL","2018-12-16 21:34:46","2019-09-17 20:15:00",-0.549085,"274:22:40"
If you want to get rid of the double quotes that jq adds when generating a CSV (which are completely valid, but you need a real parser to read the CSV) then you can replace #csv with #tsv and post-process the output with tr '\t' ',', like this:
query='
...
|#tsv
'
jq -r "$query" < D.json | tr '\t' ',' > tradelist.csv
and you'll get:
TradeNo,TradeOpenType,TradeCloseType,TradeOpenSource,TradeCloseSource,TradeOpenTime,TradeCloseTime,PNL,Exposure
0,Long,CloseLong,SIGNAL,SIGNAL,2018-12-16 21:34:46,2019-09-17 20:15:00,-0.549085,274:22:40
note: This method of getting rid of the " in the CSV is only accurate when there is no \n \t \r \ , or " characters in the input data.
Regarding the main question (regarding computing time differences), you're in luck as jq provides the built-in function fromdateiso8601 for converting ISO times to "the
number of seconds since the Unix epoch (1970-01-01T00:00:00Z)".
With your JSON sample,
.trades[]
| [ .orders[1].placedTime, .orders[0].placedTime]
| map(fromdateiso8601)
| .[0] - .[1]
produces the three differences:
79200
900
900
And here's a function for converting seconds to "hh:mm:ss" format:
def hhmmss:
def l: tostring | if length < 2 then "0\(.)" else . end;
(. % 60) as $ss
| ((. / 60) | floor) as $mm
| (($mm / 60) | floor) as $hh
| ($mm % 60) as $mm
| [$hh, $mm, $ss] | map(l) | join(":");
I prefer using an intermediate structure of the "entry" and "exit" JSON. This helps with debugging the jq commands. Formatted for readability over performance:
#!/usr/bin/env bash
echo "TradeNo,TradeOpenType,TradeCloseType,TradeOpenSource,TradeCloseSource,TradeOpenTime,TradeCloseTime,PNL,Exposure" > tradelist.csv
jq -r '
.trades[]
|{tradeNo,
profitPercentage,
entry:.orders[0],
exit:.orders[1],
entryTS:.orders[0].placedTime|fromdate,
exitTS:.orders[1].placedTime|fromdate}
|[.tradeNo,
.entry.side,
.exit.side,
.entry.source,
.exit.source,
(.entry.placedTime|strptime("%Y-%m-%dT%H:%M:%SZ")|strftime("%Y-%m-%d %H:%M:%S")),
(.exit.placedTime|strptime("%Y-%m-%dT%H:%M:%SZ")|strftime("%Y-%m-%d %H:%M:%S")),
(.profitPercentage*100),
(.exitTS-.entryTS|todate|strptime("%Y-%m-%dT%H:%M:%SZ")|strftime("%d:%H:%M"))]|#csv
' D.json | tr -d '"' >> tradelist.csv
WARNING: This formatting assumes Exposure is LESS THAN 1 MONTH. Good luck with that!

JSON JQ filter by date older than bash

I have a json with this format of data in a text.json file
[
{
"name": "page/page1.html",
"properties": {
"lastModified": "2021-08-10T18:00:45+00:00",
}
},
{
"name": "page/page2.html",
"properties": {
"lastModified": "2021-08-10T19:24:23+00:00",
}
},
{
"name": "page/page3.html",
"properties": {
"lastModified": "2021-08-10T20:36:21+00:00",
}
}
]
I want to make a list of all the names of files which are last modified more that 30 minutes ago. This is my query at the moment to get a list of file names as a variable which i can use later.
file_names=`cat text.json | jq -r .[].name`
How can I use jq to filter for lastModified more than 30 minutes ago based on the timestamp in the properties so I only get the relevant file names?
I'd typically calculate the target date in native bash.
#!/usr/bin/env bash
# make sure we have bash new enough for printf %(...)T time-formatting
# this makes our script work even without GNU date
case $BASH_VERSION in
''|[123].*|4.[012].*) echo "ERROR: bash 4.3+ required" >&2; exit 1;;
esac
export TZ=UTC # force all timestamps to be in UTC (+00:00 / Z)
# faster, bash-builtin now=$(date +%s)
printf -v now '%(%s)T' -1
# faster, bash-builtin start_date_iso8601=$(date +%s -d '30 minutes ago')
start_date_epoch=$((now - 60*30))
printf -v start_date_iso8601 '%(%Y-%m-%dT%H:%M:%S+00:00)T' "$start_date_epoch"
# read our resulting names into an array (not a string)
# jq -j suppresses newlines so we can use NUL delimiters
while IFS= read -r -d '' name; do
names+=( "$name" )
done < <(
jq -j --arg start_date "$start_date_iso8601" '
.[] |
select(.properties.lastModified < $start_date) |
(.name, "\u0000")
' <text.json
)
# print the content of the array we just read the names into
printf 'Matching name: %q\n' "${names[#]}"
This seems to work
date=`date +%Y-%m-%d'T'%H:%M'Z' -d "15 min ago"`
file_names=`jq -r --arg date "$date" '.[] | select(.properties.lastModified < $date) | .name' < text.json`
Let jq do all date computations:
With bash 4 and above with mapfile:
mapfile -d '' last_modified < <(
jq --join-output '(now - 1800) as $date | .[] | select((.properties.lastModified | .[:18] + "Z" | fromdate) < $date) | .name + "\u0000"' input_file.json
)
# For debug purpose
declare -p last_modified
Without mapfile, records are delimited with ASCII RS control character rather than a null byte:
IFS=$'\36' read -ra last_modified < <(jq -j '(now - 1800) as $date | .[] | select((.properties.lastModified | .[:18] + "Z" | fromdate) < $date) | .name + "\u001e"' input_file.json)
Here is the stand-alone jq script with comments:
#!/usr/bin/env -S jq -jf
# Store current timestamp minus 30 minutes (1800 seconds) as $date
(now - 1800) as $date |
.[] |
#
select(
(
# Strip the numerical timezone offset out from the timestamp
# and replace it with the Z for UTC iso8601
# to make it an iso8601 date string that jq understands
.properties.lastModified | .[:18] + "Z" | fromdate
) < $date
) |
.name + "\u0000"

Spread number equally across elements of array (and add remainder to beginning of ring)

Let's say I have some JSON array, we'll call it A:
["foo", "bar", "baz"]
And I have some number X, let's say 5 in this case.
I want to produce the following object in jq:
{
"foo": 2,
"bar": 2,
"baz": 1,
}
This is the number 5 divided up equally across the elements of the array, with the remainder being distributed to the elements at the beginning of the ring. You could maybe think of it this way, the value for element N should be ceil(X / length(A)) if index(N) < (X % length(A)), otherwise it should be floor(X / length(A)).
Assuming A is my file input to jq, and I have X defined as a variable, how can I express this in jq?
I have tried 'length as $len | .[] | if index(.) < (5 % $len) then (5 / $len) + 1 else 5 / $len end' | 5 as a starting point but I get 2 for each element.
You can use the transpose function to help build this. It's simpler with a ceil function, which we have to define ourselves. The mapping you are looking for from index to allocation is ceil($count - $i)/$n), where $count is the amount you are distributing, $i is the index in the original list, and $n is the length of the list.
Comments show how each piece works on your sample input of ["foo", "bar", "baz"].
def ceil(v): -(-v | floor);
def objectify(n): {key: .[0], value: ceil(($count - .[1])/n)};
# ["foo", 0] | objectify(3) -> {"key": "foo", "value", 2}
length as $n | # n == 3
[., keys] | # [["foo", "bar", "baz"], [0,1,2]]
[transpose[] | # [["foo", 0], ["bar", 1], ["baz", 2]]
objectify($n)
] |
from_entries # {"foo": 2, "bar": 2, "baz": 1}
Without the comments...
def ceil(v): -(-v | floor);
def objectify(n): {key: .[0], value: ceil(($count - .[1])/n)};
length as $n | [., keys] | [transpose[] | objectify($n)] | from_entries
An example of its use, assuming you saved it to file named distribute.jq:
jq --argjson count 5 -f distribute.jq tmp.json
I found a solution by saving the original input as a variable so that I can continue to reference it while operating on its values.
. as $arr
| length as $len
| [
.[]
| . as $i
| {
$(i): (
if ($arr | index($i)) < ($x % $len) then
($x / $len) + 1
else
$x / $len
end
| floor
)
}
]
| add
The following worked for me with passing --argjson count $X and feeding the array as my input.

Get count based on value bash

I have data in this format in a file:
{"field1":249449,"field2":116895,"field3":1,"field4":"apple","field5":42,"field6":"2019-07-01T00:00:10","metadata":"","frontend":""}
{"field1":249448,"field2":116895,"field3":1,"field4":"apple","field5":42,"field6":"2019-07-01T00:00:10","metadata":"","frontend":""}
{"field1":249447,"field2":116895,"field3":1,"field4":"apple","field5":42,"field6":"2019-07-01T00:00:10","metadata":"","frontend":""}
{"field1":249443,"field2":116895,"field3":1,"field4":"apple","field5":42,"field6":"2019-07-01T00:00:10","metadata":"","frontend":""}
{"field1":249449,"field2":116895,"field3":1,"field4":"apple","field5":42,"field6":"2019-07-01T00:00:10","metadata":"","frontend":""}
Here, each entry represents a row. I want to have a count of the rows with respect to the value in field one, like:
249449 : 2
249448 : 1
249447 : 1
249443 : 1
How can I get that?
with awk
$ awk -F'[,:]' -v OFS=' : ' '{a[$2]++} END{for(k in a) print k, a[k]}' file
You can use the jq command line tool to interpret JSON data. uniq -c counts the number of occurences.
% jq .field1 < $INPUTFILE | sort | uniq -c
1 249443
1 249447
1 249448
2 249449
(tested with jq 1.5-1-a5b5cbe on linux xubuntu 18.04 with zsh)
Here's an efficient jq-only solution:
reduce inputs.field1 as $x ({}; .[$x|tostring] += 1)
| to_entries[]
| "\(.key) : \(.value)"
Invocation: jq -nrf program.jq input.json
(Note in particular the -n option.)
Of course if an object-representation of the counts is satisfactory, then
one could simply write:
jq -n 'reduce inputs.field1 as $x ({}; .[$x|tostring] += 1)' input.json
Using datamash and some shell utils, change the non-data delimiters to squeezed tabs, count field 3, (it'd be field 2, but there's a leading tab), reverse, then pretty print as per OP spec:
tr -s '{":,}' '\t' < file | datamash -sg 3 count 3 | tac | xargs printf '%s : %s\n'
Output:
249449 : 2
249448 : 1
249447 : 1
249443 : 1

jq: how to only update data if existing?

With dev version of jq, this could be done with jq '.x.y |= if . then 123 else empty end'. (Because bug #13134 is solved.)
How can I do this in jq 1.5?
example:
in {"x": {"y": 5}}, y should be changed to 123,
but in {"x": {"z": 9}}, nothing should change.
do you need to use |=? If not could you use ordinary assignment? e.g.
jq -Mnc '
{"x": {"y": 5}} | if .x.y != null then .x.y = 123 else . end
, {"x": {"z": 9}} | if .x.y != null then .x.y = 123 else . end
'
output
{"x":{"y":123}}
{"x":{"z":9}}
With built-in has() function:
jq -nc '{"x":{"y": 5}} | if (.x | has("y")) then .x.y=123 else empty end'
The output:
{"x":{"y":123}}
Both the following produce the desired results (whether using 1.5 or later), but there are important differences in the semantics (having to do with the difference between {"x": null} and {}):
if has("x") and (.x | has("y")) then .x.y = 123 else . end
if .x.y? then .x.y = 123 else . end
Using streams could actually handle this quite nicely. A stream for an object will yield paths and values to actual existing values in your input. So search for the pairs that contain your path and update the value while rebuilding the stream.
$ jq --argjson path '["x","y"]' --argjson new '123' '
fromstream(tostream|select(length == 2 and .[0] == $path)[1] = $new)
' input.json