From what I have understand, we don't have Primary Key in the fact table and put a Surrogate Key is somehow a waste of space. Hence, the foreign key combination is the primary key for the fact table.
But I may case, I was not able to do that because the unique keys can potentially repeat in the fact table, e.g. same person paid twice on the same day, in same restaurant. In this cas, the primary key is no longer unique...
Is there anyway to solve this problème, without adding a surrogate key?
Thanks in advance !
If you are building a table like this a primary key or unique key combination is strongly recommended but if you are avoiding adding PK you may want to add unique transaction numbers so that you can do a combination of customer number and transaction number as the key combo.
InnoDB, if you don't provide a PK, will provide one for you. But it is 6 bytes and hidden. Compared to a 4-byte surrogate INT, this is bigger!
Check the data; there may be a "natural" PK that is a column or combination of columns.
Generally, for DW, the only index I have on the Fact table is the PK. Then I use "Summary tables" for the bulk of accesses. These are smaller and faster. In an extreme case, I will purge old Fact rows (via DROP PARTITION) but hang onto the Summary tables 'forever'. This keeps the disk space in check, while losing virtually nothing useful of the data.
Bottom line: Provide an explicit PK for every table.
Related
I'm putting together a new database and I have a few tables that contain temp data.
e.g.: user requests to change password - a token is stored and then later removed.
Currently I have a primary key on these tables that will auto-increment from 1 upwards.
AUTO_INCREMENT = 1;
I don't really see any use for this primary key... I will never reference it and it will just get larger.
Should tables like this have a primary key or not?
Short answer: yes.
Long answer:
You need your table to be joinable on something If you want your table
to be clustered, you need some kind of a primary key. If your table
design does not need a primary key, rethink your design: most
probably, you are missing something. Why keep identical records? In
MySQL, the InnoDB storage engine always creates a PRIMARY KEY if you
didn't specify it explicitly, thus making an extra column you don't
have access to.
Note that a PRIMARY KEY can be composite.
If you have a many-to-many link table, you create the PRIMARY KEY on
all fields involved in the link. Thus you ensure that you don't have
two or more records describing one link.
Besides the logical consistency issues, most RDBMS engines will
benefit from including these fields in an UNIQUE index.
And since any PRIMARY KEY involves creating a UNIQUE index, you should
declare it and get both logical consistency and performance.
Here is a SO thread already have same discussion.
Some people still loves to go with your opinion. Have a look here
My personal opinion is that you should have primary keys, to identify or to make a row unique. The logic can be your program logic. Can be an auto-increment or composite or whatever it can be.
It's obvious that we already have another unique information about each user, and that is username. Then, why we need another unique thing for each user? Why should we also have an id for each user? What would happen if we omit the id column?
Even if your username is unique, there are few advantages to having an extra id column instead of using the varchar as your primary key.
Some people prefer to use an integer column as the primary key, to serve as a surrogate key that never needs to change, even if other columns are subject to change. Although there's nothing preventing a natural primary key from being changeable too, you'd have to use cascading foreign key constraints to ensure that the foreign keys in related tables are updated in sync with any such change.
The primary key being a 32-bit integer instead of a varchar can save space. The choice between a int or a varchar foreign key column in every other table that references your user table can be a good reason.
Inserting to the primary key index is a little bit more efficient if you add new rows to the end of the index, compared to of wedging them into the middle of the index. Indexes in MySQL tables are usually B+Tree data structures, and you can study these to understand how they perform.
Some application frameworks prefer the convention that every table in your database has a primary key column called id, instead of using natural keys or compound keys. Following such conventions can make certain programming tasks simpler.
None of these issues are deal-breakers. And there are also advantages to using natural keys:
If you look up rows by username more often than you search by id, it can be better to choose the username as the primary key, and take advantage of the index-organized storage of InnoDB. Make your primary lookup column be the primary key, if possible, because primary key lookups are more efficient in InnoDB (you should be using InnoDB in MySQL).
As you noticed, if you already have a unique constraint on username, it seems a waste of storage to keep an extra id column you don't need.
Using a natural key means that foreign keys contain a human-readable value, instead of an arbitrary integer id. This allows queries to use the foreign key value without having to join back to the parent table for the "real" value.
The point is that there's no rule that covers 100% of cases. I often recommend that you should keep your options open, and use natural keys, compound keys, and surrogate keys even in a single database.
I cover some issues of surrogate keys in the chapter "ID Required" in my book SQL Antipatterns Volume 1: Avoiding the Pitfalls of Database Programming.
This identifier is known as a Surrogate Key. The page I linked lists both the advantages and disadvantages.
In practice, I have found them to be advantageous because even superkey data can change over time (i.e. a user's email address may change and thus any corresponding relations must change), but a surrogate key never needs to change for the data it identifies because its value is meaningless to the relation.
It's also nice from a JOIN standpoint because it can be an integer with a smaller key length than a varchar.
I can say that in practice I prefer to use them. I have been bitten too many times by having multiple-column primary keys or a data-representative superkey used across tables having to become non-unique later due to changing requirements during development, and that is not a situation you want to deal with.
In my opinion, every table should have a unique, auto-incremented id.
Here are some practical reasons. If you have duplicate rows, you can readily determine which row to delete. If you want to know the order that rows were inserted, you have that information in the id. As for users, there's more than on "John Smith" in the world. An id provides a key for foreign references.
Finally, just about anything that might describe a user -- a name, an address, a telephone number, an email address -- could change over time.
im mysql we have.
1:Index fields 2:Unique fields and 3:PK fields.
index means pointable
unique means in a table must be one in all rows.
PK = index + unique
in a table you may have lots of unique fields like
username or passport code or email.
but you need a field like ID. that is both unique and index (=PK).which is first is always one thing and never changes and second is unique and third is simple (because is often number).
One reason to have a numeric id is that creating an index on it is leaner than on a text-field, reducing index size and processing time required to look up a specific user. Also it's less bytes to save when cross-referencing to a user (relational database) in a different table.
I have some innoDbs with only 2 int columns which are foreign keys to the primary keys of other tables.
E.g one table is user_items, it has 2 columns, userId, itemId, both foreign keys to user and item tables, set to cascade if updated or deleted.
Should I add a 3rd column to such tables and make it a primary key, or is it better the way it is right now, in terms of performance or any other benefits?
Adding a third ID column just for the sake of adding an ID column makes no sense. In fact it simply adds processing overhead (index maintenance) when you insert or delete rows.
A primary key is not necessarily "an ID column".
If you only allow a single associated between user and item (a user cannot be assigned the same item twice) then it does make sense to define (userid, itemid) as the primary key of your table.
If you do allow the same pair to appear more than once then of course you don't need that constraint.
You already have a natural key {userId, itemId}. Unless there is a specific reason to add another (surrogate) key, just use your existing key as primary.
Some reasons for the surrogate may include:
Keeping child FKs "slimmer".
Elimination of child cascading updates.
ORM-friendliness.
I don't think that any of this applies to your case.
Also, please be aware that InnoDB tables are clustered, and secondary indexes in clustered tables are more expensive than secondary indexes in heap-based tables. So ideally, you should avoid secondary indexes whenever you can.
In general, if it adds no real complexity to the code you're writing and the table is expected to contain 100,000-500,000 rows or less, I'd recommend adding the primary key. I also sometimes recommended adding created_at and updated_at columns.
Yes, they require more storage -- but it's minimal. There's also the issue that the primary key index will have to be maintained and so inserts and updates may be slower if the table becomes large. But unless the table is large (100's of thousands or millions of rows) it will probably make no difference in processing speed.
So unless the table is going to be quite large, the space and processing speed impact are insignificant -- so you make the decision on how much effort it takes to maintain it and the potential utility it provides. If it takes very little extra code to do, then virtually any utility it provides might make it worthwhile.
One of the best reasons to have a primary key is to give the rows a natural order based on the order they were inserted. If you ever want to retrieve the last 100 (or first 100) rows added, it's very simple and fast if you have an auto-increment primary key on the table.
Adding inserted_at and updated_at columns can provide similar utility in terms of fetching data based on date ranges. Again, unless the number of rows is going to be very large, it may be worth evaluating these as well.
Will it ever happen that we design a table that doesn't need a primary key?
No.
The primary key does a lot of stuff behind-the-scenes, even if your application never uses it.
For example: clustering improves efficiency (because heap tables are a mess).
Not to mention, if ANYONE ever has to do something on your table that requires pulling a specific row and you don't have a primary key, you are the bad guy.
Yes.
If you have a table that will always be fetched completely, and is being referred-to by zero other tables, such as some kind of standalone settings or configuration table, then there is no point having a primary key, and the argument could be made by some that adding a PK in this situation would be a deception of the normal use of such a table.
It is rare, and probably when it is most often done it is done wrongly, but they do exist, and such instances can be valid.
Depends.
What is primary key / unique key?
In relational database design, a unique key can uniquely identify each row in a table, and is closely related to the Superkey concept. A unique key comprises a single column or a set of columns. No two distinct rows in a table can have the same value (or combination of values) in those columns if NULL values are not used. Depending on its design, a table may have arbitrarily many unique keys but at most one primary key.
So, when you don't have to differentiate (uniquely identify) each row,
you don't have to use primary key
For example, a big table for logs,
without using primary key, you can have fairly smaller size of data and faster for insertion
Primary key not mandatory but it is not a good practice to create tables without primary key. DBMS creates auto-index on PK, but you can make a column unique and index it, e.g. user_name column in users table are usually made unique and indexed, so you may choose to skip PK here. But it is still a bad idea because PK can be used as foreign key for referential integrity.
In general, you should almost always have PK in a table unless you have very strong reason to justify not having a PK.
Link tables (in many to many relationship) may not have a primary key. But, I personally like to have PK in those tables as well.
Can anyone tell me if a table in a relational database (such as MySQL / SQL SERVER) can be without a primary key?
For example, I could have table day_temperature, where I register temperature and time. I don't see the reason to have a primary key for such a table.
Technically, you can declare such a table.
But in your case, the time should be made the PRIMARY KEY, since it's probably wrong to have different temperatures for the same time and probably useless to have same more than once.
Logically, each table should have a PRIMARY KEY so that you could distinguish two records.
If you don't have a candidate key in you data, just create a surrogate one (AUTO_INCREMENT, SERIAL or whatever your database offers).
The only excuse for not having a PRIMARY KEY is a log or similar table which is a subject to heavy DML and having an index on it will impact performance beyond the level of tolerance.
Like always it depends.
Table does not have to have primary key. Much more important is to have correct indexes. On database engine depends how primary key affects indexes (i.e. creates unique index for primary key column/columns).
However, in your case (and 99% other cases too), I would add a new auto increment unique column like temp_id and make it surrogate primary key.
It makes much easier maintaining this table -- for example finding and removing records (i.e. duplicated records) -- and believe me -- for every table comes time to fix things :(.
If the possibility of having duplicate entries (for example for the same time) is not a problem, and you don't expect to have to query for specific records or range of records, you can do without any kind of key.
You don't need a PK, but it's recommended that you have one. It's the best way to identify unique rows. Sometimes you don't want an auto incremental int PK, but rather create the PK on something else. For example in your case, if there's only one unique row per time, you should create the PK on the time. It makes looks up based on time faster, plus it ensures that they're unique (you can be sure that the data integrity isn't violated):
Even if you do not add a primary key to an InnoDB table in MySQL, MySQL adds a hidden clustered index to that table. If you do not define a primary key, MySQL locates the first UNIQUE index where all the key columns are NOT NULL and InnoDB uses it as the clustered index.
If the table has no primary key or suitable UNIQUE index, InnoDB internally generates a clustered index GEN_CLUST_INDEX on a synthetic column containing row ID values.
https://dev.mysql.com/doc/refman/8.0/en/innodb-index-types.html
The time would then become your primary key. It will help index that column so that you can query data based on say a date range. The PK is what ultimately makes your row unique, so in your example, the datetime is the PK.
I would include a surrogate/auto-increment key, especially if there is any possibility of duplicate time/temperature readings. You would have no other way to uniquely identify a duplicate row.
I run into the same question on one of the tables i did.
The problem was that the PK was supposed to be composed out of all the rows of the table all is well but this means that the table size will grow very fast with each row inserted.
I choose to not have a PK, but only have an index on the row i do the lookup on.
When you replicate a database on mysql, A table without a primary key may cause delay in the replication.
http://lists.mysql.com/mysql/227217
The most common mistake when using ROW or MIXED is the failure to
verify that every table you want to replicate has a PRIMARY KEY on
it. This is a mistake because when a ROW event (such as the one
documented above) is sent to the slave and neither the master's copy
nor the slave's copy of the table has a PRIMARY KEY on the table,
there is no way to easily identify which unique row you want
replication to change.
According to your answer I would consider three options:
put a PK on both cols, this way for each time there could be only one temp and vise versa. This solution allows for multiple rows with the same temp or the same time just that there wouldn't be any two rows with same temp AND time.
don't put a PK at all but do put a unique index on both cols. one unique index containing both cols. this would allow for nulls in temp and time but incurs more space to maintain index.
these two options would be best for retrieval speed if you have heavy reads but would result in lower inserts rate as indices would have to be updated as well.
don't put any index at all, nor PK. this would be best for inserts but very bad for searching. useful for logging where retrieval is done by another
mechanism or when inserting device is not required to check for dups.
Also, it is very important to consider cardinality here and think about future consequences of using an auto incremented number. if you're planning to do A LOT OF inserts then even an auto incremented unsigned bigint would be a risk because it would eventually run out. In your example I guess you'll be saving data daily - for how long? this would be problematic if you saved temp every minute... so I'll take this as an extreme example.
I guess it is best to think about what you need from the table. are you doing "save-and-forget" for the entire year for the temp at every minute? are you going to use this table frequently in real-time decision making in your business logic? I think it is best to segregate data necessary for real-time (oltp) from long-term saving data that would be required seldom and its retrieval latency is allowed to be high (olap). it's even worth duplicating the data into two different tables, one heavily indexed and get erased once in a while to control cardinality and the second is actually saved on a magentic disk with almost no indices at all (it is possible to transfer a schema from your main fs into another fs).
I've got a better example of a table that doesn't need a primary key - a joiner table. Say I have a table with something called "capabilities", and another table with something called "groups", and I want a joiner table that tells me all the capabilities that all the groups might have, so it's basicallly
create table capability_group
( capability_id varchar(32),
group_id varchar(32));
There is no reason to have a primary key on that, because you never address a single row - you either want all the capabilities for a given group, or all the groups for a given capabilty. It would be better to have a unique constraint on (capabilty_id,group_id), and separate indexes on both fields.